

Aerospace Sealing Systems

PRODUCT CATALOG & ENGINEERING GUIDE

Your Partner for Sealing Technology

Trelleborg Sealing Solutions is a major international sealing force, uniquely placed to offer dedicated design and development from our market-leading product and material portfolio: a one-stop-shop providing the best in elastomer, thermoplastic, PTFE and composite technologies for applications in aerospace, industrial and automotive industries.

With 50 years of experience, Trelleborg Sealing Solutions engineers support customers with design, prototyping, production, test and installation using state-of-the-art design tools. An international network of over 70 facilities worldwide includes over 20 manufacturing sites, strategically-positioned research and development centers, including materials and development laboratories and locations specializing in design and applications.

Developing and formulating materials in-house, we utilize the resource of our material database, including over 2,000 proprietary compounds and a range of unique products.

Trelleborg Sealing Solutions fulfills challenging service requirements, supplying standard parts in volume or a single custom-manufactured component, through our integrated logistical support, which effectively delivers over 40,000 sealing products to customers worldwide. Facilities are certified to ISO 9001:2008 and ISO/TS 16949:2009. Trelleborg Sealing Solutions is backed by the experiences and resources of one of the world's foremost experts in polymer technology: the Trelleborg Group.

The information in this brochure is intended to be for general reference purposes only and is not intended to be a specific recommendation for any individual application. The application limits for pressure, temperature, speed and media given are maximum values determined in laboratory conditions. In application, due to the interaction of operating parameters, maximum values may not be achieved. It is vital therefore, that customers satisfy themselves as to the suitability of product and material for each of their individual applications. Any reliance on information is therefore at the user's own risk. In no event will Trelleborg Sealing Solutions be liable for any loss, damage, claim or expense directly or indirectly arising or resulting from the use of any information provided in this brochure. While every effort is made to ensure the accuracy of information contained herewith, Trelleborg Sealing Solutions cannot warrant the accuracy or completeness of information.

To obtain the best recommendation for a specific application, please contact your local Trelleborg Sealing Solutions marketing company.

This edition supersedes all previous brochures. This brochure or any part of it may not be reproduced without permission.

All trademarks are the property of Trelleborg Group.
 The turquoise color is a registered trademark of Trelleborg Group.
 2011, Trelleborg Group. All rights reserved.

Sealing Solutions for Demanding Aerospace Applications

As a global market leader in the supply of aerospace sealing solutions, with over 60 years of experience in the industry, Trelleborg Sealing Solutions can provide the optimum seal for the majority of applications. The materials and products included in this catalog can be fitted on anything from two-seater light aircraft to heavy-duty long-range commercial airliners, from military planes to spacecraft and satellites, from ships to submarines and marine applications. Seals from Trelleborg Sealing Solutions provide proven performance in a wide variety of systems including flight controls, actuation, landing gear, wheels, brakes, fuel controls, engines and airframe.

Content

Aerospace Sealing C	apabilities	3
	e systems into which seals from Trelleborg Sealing Solutions are fitted ds and the production sites that focus on the aerospace industry	
Brands and Manufac	turing Facilities	4
Aerospace Service		6
	rvice offered to customers in the aerospace industry ated to sealing in the aerospace industry	
Aerospace Standard	S	7
	r Sealing Solutions range of proprietary materials specifically engineered for	9
Turel [®] and Isolast [®] :	High-performance elastomers	13
Turcon [®] :	PTFE based compounds	17
Zurcon [®] :	High modulus thermoplastics	21
Orkot [®] :	High-strength composite materials	23
-	dware, coatings and finish of mating surfaces	25
Surface Finishes		27
Surface Finish Measu	rement Methods	29
Shaft Materials		33
Plating and Coating		34
Hardware Dimensions	5	36

Industry Specific Products	53
Trelleborg Sealing Solutions has the largest sealing product portfolio in the industry. With this and our engineered solutions, we can meet almost any sealing challenge. Included in this catalog are seals specifically recommended for aeropsace and defense applications.	
Seals and Back-up Rings for AS4716 grooves	61
Turcon[®] VL Seal[®]: Next generation unidirectional rod seal	
Turcon[®] Variseal[®]: Spring-energized seal	
Turcon [®] Plus Seal [®] II: Superior slipper seal	
Turcon [®] Double Delta [®] II: Original slipper seal	
Turcon [®] Wedgpak [®] II: With triangular elastomer	
Turcon [®] T-Seal: With T-shaped elastomer	
Turcon [®] AQ-Seal [®] 5: Incorporating elastomer X-Ring	
Back-up Ring and Stakbak [®] : Optimizing O-Ring performance	
Seals for AS4716 – Rod and bore sizes only	177
Turcon [®] Dual Piston Ring: With metal expander	
Turcon [®] Glyd Ring [®] : Simple and reliable	
Turcon [®] Stepseal [®] 2K: Double-acting tandem seal	
Rotary seals for AS4716 – Rod and bore sizes only	197
Introduction	
201 201	
Turel [®] Radial Oil Seal: Elastomer bonded to metal	
Turcon[®] Roto Variseal[®]: Spring-energized seal	
Turcon[®] Varilip[®] PDR: Mechanically retained Turcon [®] sealing element	
Turcon [®] Roto Glyd Ring [®] : Original slipper seal	
Other elements used in sealing configurations	233
235 Polymer Bearings: Enhanced friction capabilities	
Turcon[®] Excluder[®] and Scrapers: Prevents system contamination	
Turcon[®] Face Seals: Seal variations for face seal applications	
O-Rings: Versatile elastomer sealing elements	
Installation & Hardware Guidelines	293
295	
Installation Guidelines	
Storage Advice	
Part Number Guide	303

Aerospace Sealing Capabilities

Seals from Trelleborg Sealing Solutions provide proven performance in a wide variety of systems including flight controls, actuation, landing gear, wheels, brakes, engines and airframe.

Actuation

High-integrity piston and gland seals are specified to meet the high usage, long-life demands of aircraft actuators. These can be engineered for a variety of configurations up to 8,000 psi/ 55 MPa. With our vast experience in this field, Trelleborg Sealing Solutions can also assist with actuator design by recommending component tolerances, surface finishes, coatings and seal groove geometries.

For rotary shaft seal applications, Trelleborg Sealing Solutions provides anything from conventional radial oil seals to high-performance Turcon[®] Varilip[®] PDR lip seals. Subassembly and installation support is also available.

Flight Controls

Flight controls, whether primary or secondary, are the most demanding of all the hydraulic actuation systems on an aircraft. Trelleborg Sealing Solutions has achieved a dominant role as a supplier of dynamic sealing systems for flight controls in both military and civil aircraft, on fixed and rotary wing airframes. Operating conditions and performance requirements have become more stringent when comparing traditional fly-by-wire systems, implemented in military aircraft during the 1980s, to the more complex electro hydraulic actuators used on the latest civil and military aircraft. We have evolved advanced sealing systems to match these.

Trelleborg Sealing Solutions has developed sealing systems that are able to cope with the high system pressure (5,000 psi) demands seen in today's aircraft. They can also handle an almost ten-fold increase in life expectancy as well as high frequency movements resulting from the transition from analog to digital signals to the controls. This has been made possible through extensive developments in seal profiles and materials along with research into the dynamic relationship between individual sealing system elements and performance life.

Landing Gear

As a major supplier of seals and bearings for both large and small landing gear, Trelleborg Sealing Solutions has, with a variety of proprietary seal types, pioneered the use of dual contact seals. These optimized seal

Latest information available at www.tss.trelleborg.com Edition August 2011 designs have contributed to extended operating and service life of landing gear on virtually all aircraft platforms. In addition, new seal designs that are able to work in ultra-high deflection environments on surfaces that are not coated with chrome, such as High-Velocity Oxygen Fuel (HVOF) applied tungsten carbide cobaltbased coatings, are now available.

To further increase service life, adding Orkot[®] bearings prevents scratches and for existing gear designs, significantly reduces bearing component weight. In addition, service life and seal performance can be improved with retrofit sealing systems in Turcon[®], Turel[®] or Orkot[®].

Wheel and Brake

Designed for superior performance in harsh environments, the Trelleborg Sealing Solutions portfolio provides a complete range of static and dynamic sealing systems including steel-reinforced bearing grease retainers, large O-Ring wheel hub seals and hightemperature brake seals. We have test capabilities specific to the rigors of braking applications.

Engine Systems*

A wide range of sealing systems for engine and engine management applications is available including fan blade annulus fillers, fan cowl and thrust reverser doors, heat exchangers, drive shafts, air intakes, fairings and coupling systems. Materials are selected for high-temperature performance including Isolast[®], the advanced perfluoroelastomer specially developed by Trelleborg Sealing Solutions, which will operate at up to +608°F/ +320°C. Reinforced engine seals and ducts are available that can provide fire control at tested temperatures of +2,012°F/ +1,100°C.

Airframe*

With a focus on aerodynamic efficiency, Trelleborg Sealing Solutions offers a range of standard and customized designs, developed for reliability in service and efficiency in assembly and maintenance. The Trelleborg Sealing Solutions range includes seals for wing and moving surfaces such as complex aerodynamic shrouds for hydraulic jacks, extrusions and fabricated seals for doors and hatches, interior couplings, inflatable cockpit canopy seals and fabricated swingwing fuselage fairings.

* For more information on our Engine and Airframe products see our separate brochure Aero Engine and Airframe Sealing Solutions.

Brands and Manufacturing Facilities

Trelleborg Sealing Solutions is one of the largest seal producers in the world, with over 25 strategically located manufacturing facilities on four continents. Each site specializes in a single product group or type, whether it is seals in proprietary Turcon[®] PTFE based materials or Zurcon[®] polyurethane formulations, exclusive designs in unique elastomers including Turel[®] or Isolast[®], bearings or airframe seals. Listed below are production sites that focus on supply to the aerospace market, many of which are responsible for world-renowned brands respected within the sector.

Trelleborg Sealing Solutions manufacturing sites:

Helsingør, Denmark Formerly W.S. Shamban Europe A/S

Founded in the 1960s as the European supplier of the Shamban range of products, this facility is a leading manufacturer of hydraulic, fuel systems and engine seals. It is the Trelleborg Sealing Solutions center for the development of the proprietary Turcon[®] PTFE based materials and Turcon[®] VL Seal[®].

Condé, France Formerly Impervia

The facility has built its expertise over a 60-year history. It was the first manufacturer of elastomeric and plastic seals in France for the aerospace industry and is still the leading company in this sector within the country. It specializes in elastomer products, O-Rings, special moldings, bonded seals and machined seals. Bridgwater, UK Formerly Wills Polymers

The main areas of expertise of this facility are Turcon[®] Variseal[®] and Turcon[®] Varilip[®] PDR. Wills Rings[®], the original metal rings, were developed here in the 1930s.

Cadley Hill, UK Formerly Woodville Polymers

Experts in homogenous and fabric-reinforced silicone profiles used to seal airframe structures, access panels and engine systems.

Tewkesbury,UK Formerly Dowty Seals

With roots going back to the 1940s, this facility is the Trelleborg Sealing Solutions center of expertise for elastomer materials, high-performance O-Rings, gaskets and elastomer-based custom-designed sealing solutions.

Broomfield, Colorado, USA Formerly American Variseal Corporation

The main areas of expertise of the facility are Turcon[®] Variseal[®] and Turcon[®] Varilip[®] PDR. It is also the design and manufacturing center for engineered bearing products made form high modulus materials.

São Paulo, Brazil

Manufacturer of elastomer seals to support the aerospace & defense industries in Brazil and Latin America.

For full details of our manufacturing facilities worldwide go to www.tss.trelleborg.com. All inquiries should be directed to your local Trelleborg Sealing Solutions marketing company.

Fort Wayne, Indiana, USA Formerly Busak+Shamban Seals Division

A leading manufacturer of hydraulic, fuel systems and engine seals, the company was established in the 1950s. The facility provides innovative and functional solutions for complex applications by utilizing the best of elastomer and thermoplastic materials technologies. Home of the slipper seal products originally developed by W.S. Shamban: Double Delta[®], Footseal, HATSEAL[®], Wedgpak[®] and Plus Seal[®].

Northborough, Massachusetts, USA Formerly Chase-Walton Elastomers

Experts in homogenous and fabric-reinforced silicone profiles used to seal airframe structures, access panels and engine systems. Products manufactured at the facility include ducting for high-temperature applications, aerodynamic wing seals, nacelle seals, engine seals, fire seals and pylon seals.

Aerospace Service

Due to the increasingly stringent requirements of the aerospace market, Trelleborg Sealing Solutions places strong emphasis on its ability to globally service, support and supply its aerospace customers through our international network of manufacturing facilities and support teams.

Technical and Engineering Expertise

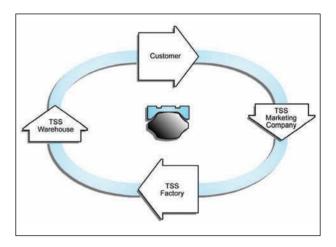
Trelleborg Sealing Solutions is uniquely placed to offer a dedicated seal design and development service to the aerospace market. As our seals are used in virtually every major commercial and military program, our engineering personnel are able to contribute their knowledge of this specialized technology directly to customers. Dedicated teams are appointed to manage the supply process that starts with the efficient handling of inquiries to complete project management of design, prototyping, production, testing and installation of sealing systems. To facilitate this we employ state-ofthe-art design tools, fully customer-compatible CAD systems and leading-edge Finite Element Analysis (FEA).

Quality and Manufacturing Capability

Trelleborg Sealing Solutions manufacturing sites are strategically located to provide global coverage. They succeed in delivering cost-effective sealing solutions, while maintaining the highest standards of international airworthiness, quality control and conformance to the latest environmental legislation. The FAA, EASA and leading aerospace manufacturers are regular visitors to Trelleborg Sealing Solutions facilities worldwide, and Trelleborg Sealing Solutions continues to work with these groups to enhance their reputation for quality and to maintain their key position in the aerospace supply chain.

All Trelleborg Sealing Solutions manufacturing facilities are certified to ISO 9001:2008 and ISO/TS 16949:2009 and those involved in production of aerospace parts have AS/EN 9100 approval.

Logistics, Kitting, Direct Line Feed and Subassemblies


An extensive global distribution network, backed by logistic centers in Europe, Asia-Pacific and the Americas, ensures rapid delivery to our customers. Trelleborg Sealing Solutions has proven expertise in kitting to provide complete seal sets to customers presented in the way best suited to their needs. All the seals in the kits are backed up by full technical and quality support.

Trelleborg Sealing Solutions can also produce subassemblies on behalf of our customers. These make assembly at the next stage easier and can minimize installation-related seal failures. Subassemblies, kits or individual seals can be delivered direct to the customers' shop floors using reliable, low paperwork direct line feed (DLF) systems. These minimize customer procurement costs, stock and delivery error rates.

Aftermarket Support

Dedicated customer-focused teams ensure that aftermarket needs are met. Trelleborg Sealing Solutions engineers regularly visit the airframe manufacturers, airlines, Original Equipment Manufacturers (OEMs) and Maintenance Repair Overhaul (MRO) repair stations. Our engineers provide them with technical support and guidance so systems run at peak performance. Our knowledge of seal and bearing system performance in operating conditions has enabled many customers to upgrade to more reliable systems and increase performance, without additional hardware or tooling costs.

Aerospace Standards

There are a large number of standards that apply to the aerospace industry. Listed in this section are the key ones.

Standard authorities

All standards prefixed with either AS (Aerospace Standard) or ARP (Aerospace Recommended Practice) are issued by SAE International (Society of Automotive Engineers) in the US. Trelleborg Sealing Solutions is an active contributor to the SAE work. Copies of SAE standards may be obtained from the Society of Automotive Engineers. Go to their website at www.sae.org.

This is a standards development organization for the engineering of powered vehicles of all kinds including aerospace. In addition, MIL standards cover military aircraft and are issued by the US Department of Defense.

ARP1234, Revision B Gland Design, Elastomeric O-Ring Seals, Static Axial, Without Back-up Rings

Provides standardized dimensional criteria for static axial elastomeric O-Ring seal glands, without Backup Rings. This standard supplements ARP 1231, "Gland Design, Elastomeric O-Ring Seals, General Considerations." The criteria are similar, but not identical, to those in MIL-G-5514.

ARP5316

Storage of Elastomer Seals and Seal Assemblies Which Include an Elastomer Element Prior to Hardware Assembly

Addresses the general requirements for data recording procedures, packaging and storing of elastomeric seals and seal assemblies which include an elastomeric element prior to the seal being assembled into hardware components.

The requirement for packaging is an integral part of the controlled storage procedure and provides a means of positive product identity from the time of manufacturing to the time of assembly into a component.

AS4088

Aerospace Rod Scraper Gland Design Standard

Defines gland dimensions for rod scrapers. Gives specifications for rod diameters from ¼ to 15 ½ inches/ six to 394 mm, inclusive corresponding to AS568 O-Ring Dash No. sizes -108/-111, -206/-222, -325/-349

Latest information available at www.tss.trelleborg.com Edition August 2011

AS4052

Gland Design: Scraper, Landing Gear, Installation

Covers an alternate gland design for the installation of scraper/ wiper rings in the lower end of landing gear shock struts for the purpose of contaminant exclusion.

Piston rod diameters, gland internal diameters, groove sidewall angles and the surface finish are all defined by AS4716, but the gland outer retaining wall diameter is changed. The gland has a reduced atmospheric gland lip and profiled lead in geometry to allow for a PTFE jacket metal spring-energized scraper to be installed.

AS4716

Gland Design, O-Ring and Other Elastomeric Seals

Provides standardized gland design criteria and dimensions for elastomeric seal glands for static and dynamic applications.

The glands have been specifically designed for applications using SAE AS568 size O-Rings, with related class 2 tolerances, at pressures exceeding 1,500psi/ 10.3 MPa utilizing one or two anti-extrusion Back-up Rings and applications at pressures under 1,500psi/ 10.3 MPa without Back-up Rings. While this specification covers the basic design criteria and recommendations for use with standard size O-Rings, these glands are also for use with other elastomeric and PTFE based seals and packings.

AS4832

Gland Design: Nominal 3/8 Inch Cross Section for Custom Compression Type Seals

Offers gland details for a nominal 3/8 inch/ 0.364 mm cross section gland with proposed gland lengths for compression-type seals with two Back-up Rings over a range of eight to 20 inches/ 203 to 508 mm in diameter.

A dash number system is proposed similar to AS568A. Seal configurations and design are not a part of this document. This gland is for use with custom compression-type seals including, but not limited to O-Rings, T-Rings, D-Rings, etc.

AS5857

Gland Design, O-Ring and Other Elastomeric Seals, Static Applications

Provides standardized gland design criteria and dimensions for seal glands for static applications.

The glands have been specifically designed for applications using SAE AS568 size O-Rings, with related class 2 tolerances, at pressures exceeding 1,500psi/10.3 MPa utilizing one or two anti-extrusion Back-up Rings and applications at pressures under 1,500psi/10.3 MPa without Back-up Rings. The glands have been sized to provide increased squeeze as compared to AS4716 for more effective sealing at low temperatures and low seal swell conditions. Primary usage is for static external sealing.

ASME B46.1 Surface Texture (Surface Roughness, Waviness and Lay)

This standard is concerned with the geometric irregularities of surfaces. It defines surface texture and its constituents: roughness, waviness and lay along with parameters for specifying surface texture.

The terms and ratings in this standard relate to surfaces produced by such means as abrading, casting, coating, cutting, etching, plastic deformation, sintering, wear, erosion, etc.

ISO 4287

Geometrical Product Specifications (GPS) -- Surface Texture: Profile Method -- Terms, Definitions and Surface Texture Parameters

This international standard specifies terms, definitions and parameters for the determination of surface texture (roughness, waviness and primary profile) by profiling methods.

MIL-G-5514

Military Specification- General Requirements for Gland Design; Packings, Hydraulic Equipment

Approved for use by all Departments and Agencies of the Department of Defense.

This specification covers basic design criteria recommendations for use and application in packings, gaskets, packing and gasket glands and related features for use in hydraulic equipment utilized in systems designed in accordance with MIL-H-5440.

Material technology

As specialists in polymer technology, Trelleborg Sealing Solutions has for decades been a world-leader in the development of new polymeric compounds for use in aerospace applications. Not only does Trelleborg Sealing Solutions develop and formulate its aerospace materials in-house, it has also acquired significant skills in the field of applied materials technology enabling us to recommend coatings and surface finishes. Seals can be individually hand-fabricated, automatically molded, fabric-reinforced or bonded to metallic components. A full range of aerospace grade Turel[®] elastomers is available, specifically engineered to withstand the extremes of temperature and aggressive chemicals encountered in today's aircraft. To complement these materials, many proprietary blends of premium-grade Turcon[®] PTFE based materials along with high-modulus Zurcon[®] thermoplastics are available to provide a one-stop-shop of engineered solutions for aerospace sealing challenges. In addition for bearings there is Orkot[®], a unique thermoplastic composite material.

Turel[®] and Isolast[®]

The Turel[®] range of elastomers is specifically engineered to meet the challenging requirements of the aerospace industry. It includes Nitrile (NBR), Fluorocarbon (FKM), Ethylene Propylene Diene Monomer (EPDM), Hydrogenated Nitrile Butadiene Rubber (HNBR), Fluorosilicone (FVMQ) and Silicone Rubber (Q). In addition, for high-temperature applications, an Isolast[®] perfluoroelastomer (FFKM) is recommended. These materials are extremely flexible in their use and are suitable for a large number of applications.

The various elastomers can be characterized as follows:

NBR (Nitrile Butadiene Rubber) Turel[®] Standard Grades: NE, NG, NB, NZ

NBR is primarily used with mineral-based oils and greases. The properties of NBR depend mainly on their acrylonitrile (ACN) content, which ranges between 18 and 50 percent. In general the materials have good mechanical properties with operating temperatures ranging between -22°F/-30°C and +212°F/+100°C. For short periods of time NBRs can withstand up to +248°F/+120°C and specially formulated NBR can be used down to -76°F/-60°C.

FKM (Fluorocarbon Rubber) Turel® Standard Grades: FK, FT, FG, FL

FKM is primarily used with mineral-based oils and greases at high temperatures. Depending on structure and fluorine content, FKM materials can differ with regards to their chemical resistance and cold-flexibility. FKM is particularly known for its non-flammability, low gas permeability, and excellent resistance to ozone, weathering, and aging. The operating temperatures of FKM materials range between -4°F/-20°C and +392°F/+200°C. For short periods of time FKMs can withstand up to +446°F/+230°C and specially formulated FKM can be used down to -60°F/-51°C.

EPDM (Ethylene Propylene Diene Monomer) Turel[®] Standard Grades: EP, EH

EPDM is often used in applications with brake fluids, based on glycol, and hot water. EPDM materials give good heat, ozone, and aging resistance. In addition they also exhibit high levels of elasticity, good low temperature behavior as well as good insulating properties.

The operating temperatures of EPDM materials range between -49°F/-45°C and +302°F/+150°C. For short periods of time they can withstand up to +347°F/+175°C. Operating temperatures of sulfur cured types are reduced to between -49°F/-45°C and +248°F/+120°C, for short periods of time EPDMs can withstand up to +302°F/+150°C.

HNBR (Hydrogenated Nitrile Butadiene Rubber)

HNBR is often used in high-temperature applications due to excellent abrasion resistance. HNBR materials are produced by selective hydrogenation of the NBR groups. Like these, the properties of the HNBR rubber depend on their acrylonitrile (ACN) content which ranges between 18 and 50 percent as well as on the degree of its saturation. HNBR has good mechanical properties.

The operating temperatures of HNBR materials range between $-22^{\circ}F/-30^{\circ}C$ and $+284^{\circ}F/+140^{\circ}C$. For short periods of time HNBRs can withstand up to $+320^{\circ}F/+160^{\circ}C$ in contact with mineral oils and greases. Special formulations can be used down to $-40^{\circ}F/-40^{\circ}C$.

FVMQ (Fluorosilicone Rubber) Turel[®] Standard Grades: LA, LB, LD, LF

FVMQ is often used in the military applications and fuel systems. FVMQ materials give excellent heat resistance, cold flexibility, dielectric properties and especially good resistance to oxygen and ozone.

Depending on the material, operating temperatures range between -76°F/-60°C and +392°F/+200°C. For short periods of time FVMQs can withstand up to +446°F/+230°C. Special formulations can be used down to -130°F/-90°C.

Q (Silicone Rubber) Turel® Standard Grades: SL

Silicone rubber is often used in gaskets, molded seals, airframe, aerodynamic and engine seals. The material gives excellent heat resistance, cold flexibility, dielectric properties and especially good resistance to oxygen and ozone.

Depending on the material, operating temperatures range between -76°F/-60°C and +392°F/+200°C. For short periods of time Silicone Rubbers can withstand up to +446°F/+230°C. Special types can be used down to -130°F/-90°C.

FFKM (Perfluoroelastomer) Isolast[®] Standard Grades: J8325

Applications for FFKM can be mostly found in aircraft engines and in all applications with either aggressive environments or high temperatures.

Perfluoroelastomers are resistant to virtually all media at elevated temperatures and demonstrate low swelling.

Depending on the material, operating temperatures range between -13°F/-25°C and +464°F/+240°C. Special types can be used up to +617°F/+325°C.

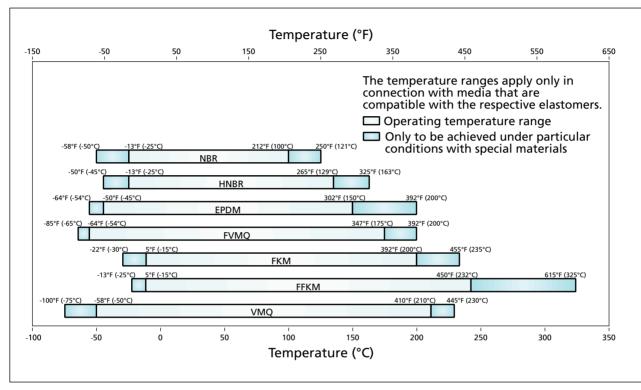


Figure 1 General temperature range of various elastomer types

Meeting Specifications and Approvals

For aerospace applications many designs are composite seals, with an elastomer element as an integral part of the seal. It is therefore important that parameters such as elastomer swell, shrinkage during molding, compression set, media compatibility and tolerances are carefully controlled.

Through stable processes and 100 percent batch testing in our laboratories, we make sure that materials are manufactured to Trelleborg Sealing Solutions specifications. A number of materials have also been approved for a Qualified Products List (QPL) as part of US Government and Aerospace Industry support programs.

Chemical Compatibility

Elastomer materials are more sensitive to fluids than other sealing compounds. Chemical reaction can cause damage to the seal, affecting physical properties. Specifically in hydraulic applications, selection of the optimum elastomer material for a given hydraulic fluid is critical. Not only must the oil used be taken into account but also the additives, as these can cause adverse behavior. It may be necessary to conduct a soak test at elevated temperature in order to verify the performance in application. An online chemical compatibility guide can be accessed at www.tss. trelleborg.com.

Temperature Range

Turel[®] compounds are available to operate in temperatures from -100°F to +500°F/ -73°C to +260°C. Most will therefore meet the temperature requirements of AS4716 type II systems, specified as -65°F to +275°F/ -54°C to +135°C. The use of spring-energized Variseal[®] can expand the temperature range even further. In addition, for high-temperature applications, Isolast[®] J8325 has an operating temperature up to +617°F/ +325°C.

Temperature Cycling

The effect of temperature cycling on elastomer seals can result in compression set. This means that the elastomer material loses its elasticity over time. For Turel[®] materials, this effect is kept to an acceptable minimum if they are specified for applications with operating temperatures within the indicated parameters. The low-temperature dynamic cycling limits vary according to elastomer type.

Cold Temperatures

Elastomer materials from Trelleborg Sealing Solutions are specially engineered to give maximum performance in cold conditions.

Elastomer materials contract approximately ten times more than steel in cold environments. The material becomes stiffer and loses its flexibility at cold temperatures. When passing the lower limit it reaches the glass transition stage, when it becomes extremely brittle. Physical properties will recover when temperatures elevate again. Increased squeeze can improve performance at low temperatures.

Hot Temperatures

Elastomer materials soften and lose their physical properties if the upper temperature limit is exceeded. Physical properties will not recover and the seal will take on a permanent compression set. The compression set also varies with the type of media to which the elastomer is exposed. Continuous exposure to temperatures higher than those recommended can permanently damage the seal.

Surface Speed

In general, the speed of the dynamic surface in contact with an elastomer seal should be kept below 9.8 ft/s / three m/s to avoid damage to the elastomer. Elastomers can be used at speeds greater than listed here. Please contact your local Trelleborg Sealing Solutions marketing company for more information.

Aging

The maximum recommended storage time and shelflife is shown in Table I, per SAE ARP 5316. This is only valid if the elastomer is stored under controlled conditions in light-proof and airtight packaging, as specified in above standard.

Total Materials Capability

In this section we have given details of those elastomer materials that are recommended and commonly used in aerospace applications. Other materials are available. For further details on these either contact your local marketing company or go to www.tss.trelleborg.com.

Table I Turel[®] and Isolast[®] Materials

TSS Material Code	Base Polymer	Temperature Range °F (°C)	Hardness (Shore A)	Material commonly used in listed fluids	Reference Specification	Recommended ²⁾ Shelf Life
Turel®		(-/				
NE	Nitrile (NBR)	-65°F to +275°F (-54°C to +135°C)	75	MIL-PRF-83282 MIL-PRF-87257	AMS-P-83461 (on QPL)	15 Years
NG	Nitrile (NBR)	-65°F to +275°F (-54°C to +135°C)	75	MIL-PRF-5606 MIL-PRF-83282	MIL-P-25732	15 Years
EH	Ethylene Propylene (EP)	-65°F to +300°F (-54°C to +149°C)	80	AS1241 Phosphate Ester	NAS 1613 Rev. 2 Equivalent	Unlimited
EP	Ethylene Propylene (EP)	-65°F to +300°F (-54°C to +149°C)	80	AS1241 Phosphate Ester	NAS 1613 Rev. 5 Equivalent	Unlimited
FT	Fluorocarbon (FKM)	-30°F to +500°F (-34°C to +260°C)	75	Jet Fuel	MIL-R-83485 ¹⁾	Unlimited
FG	Fluorocarbon (FKM)	-40°F to +400°F (-40°C to +204°C)	75	Jet Fuel	AMS 7379	Unlimited
LF	Fluorosilicone (FVMQ)	-100°F to +350°F (-73°C to +177°C)	70	MIL-PRF-7808 MIL-PRF-23699 MIL-PRF-5606 MIL-PRF-83282 MIL-PRF-87257	MIL-R-25988 ¹⁾	Unlimited
LA	Fluorosilicone (FVMQ)	-70°F to +350°F (-57°C to +177°C)	80	MIL-PRF-7808 MIL-PRF-23699 MIL-PRF-5606 MIL-PRF-83282 MIL-PRF-87257	MIL-R-25988 ¹⁾	Unlimited
Isolast®						
J8325	Perfluoroelastomer (FFKM)	+5°F to +617°F (-15°C to + 325°C)	75	MIL-PRF-7808 MIL-PRF-23699	AMS 7257C	Unlimited

Meets physical property requirements of applicable specification
 Shelf life guidelines per SAE Aerospace Recommended Practice ARP 5316 and ISO DIS 27996:2009 (published 2009-02-03)

³⁾ This table represents common TSS Turel & Isolast elastomer material grades, this table is not comprehensive, for additional materials and for any material questions please contact you local TSS Sales Engineer.

Testing to reference specification on a lot-by-lot basis is available on request.

Material recommendations for sealing in Aerospace Hydraulic Fluids

Hydraulic fluid is integral to all hydraulic systems. When specifying seals for these systems it is important to understand the interaction between the polymers the seals are made of and the operating fluid. The elastomer must be compatible with the fluid to ensure long-term performance and durability. It must also be capable of withstanding the operating environment. Listed below are fluids commonly used in today's Aerospace applications along with the most suitable Trelleborg Sealing Solutions elastomer. A fluid viscosity versus temperature graph is included for referencing the performance characteristics of typical aerospace fluids and lubricants with which Turel[®] and Isolast[®] materials are compatible.

Table II Typical Aerospace Hydraulic Fluids with recommended Turel[®] Material

Specification	Oil Type (base)	Temperature Range	General Information	Most Suitable Turel [®] Elastomers
MIL-PRF-5606 (NATO code H-515)	Petroleum	-65°F to +275°F (-54°C to +135°C)	Fluid used mostly for landing gear shock strut applications	Turel [®] NG (NBR) Turel [®] FT (FKM) Turel [®] FK (FKM) Turel [®] FG (FKM)
MIL-PRF-83282 (NATO code H-537)	Synthetic hydrocarbon	-40°F to +401°F (-40°C to +205°C)	Gives improved fire resistance and shear stability. Reduced low temperature capability compared to MIL-PRF-5606 and MIL-PRF-87257.	Turel [®] NG (NBR) Turel [®] FT (FKM) Turel [®] FK (FKM) Turel [®] FG (FKM)
MIL-PRF-87257 (NATO code H-538)	Synthetic hydrocarbon	-65°F to +350°F (-54°C to +177°C)	Similar to MIL-PRF-83282 with improved low temperature capability	Turel [®] NE (NBR) Turel [®] FT (FKM) Turel [®] FK (FKM) Turel [®] FG (FKM)
AS1241 Class 1 AS1241 Class 2	Phosphate ester	-65°F to +275°F (-54°C to +135°C)	Primarily used on commercial aircrafts. No fire propagation. Class 1 is low-density and Class 2 is high-density.	Turel [®] EH (EPR) Turel [®] EP (EPR)
MIL-PRF-7808	Synthetic oil-ester	-65°F to +300°F (-54°C to +149°C)	Engine lubrication oil	Turel [®] FT (FKM) Turel [®] FG (FKM) Turel [®] FL (FKM) Isolast [®] J8325 (FFKM)
MIL-PRF-23699	Synthetic lubricant oil	-40°F to +400°F (-40°C to +204°C)	Engine lubrication oil. High Thermal Stability (HTS) versions available for longer operating duration applications. Operating temperatures up to + 450°F/ + 232°C.	Turel [®] FT (FKM) Turel [®] FG (FKM) Turel [®] FL (FKM) Isolast [®] J8325 (FFKM)
Jet Fuel; JP-4, JP-5 and JP-8, Jet-A and Jet A-1	Wide-cut (gas and kerosene)	-52°F to +100°F (-47°C to +38°C)	Commercial aviation fuel grades. Freezing temperature of Jet A is -40°F/ 40°C and Jet A-1 is -52°F/ -47°C.	Turel [®] FT (FKM) Turel [®] FG (FKM) Turel [®] FL (FKM)

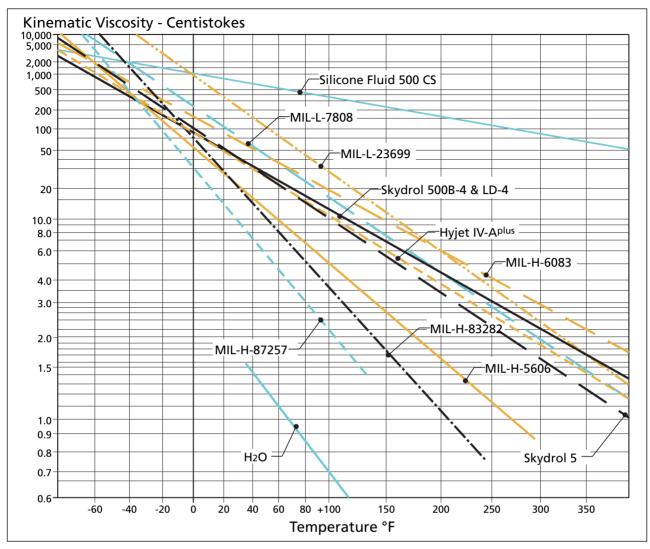


Table III Typical Aerospace Greases with recommended Turel[®] material

Specifications	Temperature Range	Туре	Most Suitable Turel [®] Elastomers
MIL-G-21164D	-73°C to +121° C (-100° F to +250° F)	Multi-purpose grease; micro gel-thickened synthetic diester oil base with molybodem disulfide	1)
MIL-PRF-23827C	-73°C to +121° C (-100° F to +250° F)	Synthetic aviation grease; lithium complex-thickened synthetic base oil	1)
MIL-PRF-81322F	-54°C to +125° C (-65° F to +250° F)	Multi-purpose grease; micro gel-thickened synthetic hydrocarbon oil base	Turel [®] NE (NBR) Turel [®] NG (NBR) Turel [®] FT (FKM) Turel [®] FK (FKM) Turel [®] FG (FKM)
MIL-G-24139A	-73°C to +121° C (-100° F to +250° F)	General purpose airframe grease; Composition: Micro Gel-thickened mineral oil base (Boeing BMS3-33)	Turel [®] NE (NBR) Turel [®] NG (NBR)
MIL-G-25537C	-54°C to +93° C (-65° F to +200° F)	Multi-purpose helicopter grease; calcium soap thickened mineral oil base	Turel [®] NE (NBR) Turel [®] NG (NBR)
MIL-G-81322E, Grade A	-54°C to +125° C (-65° F to +250° F)	Synthesized hydrocarbon fluid & a non-soap thickener	Turel [®] NE (NBR) Turel [®] NG (NBR) Turel [®] FT (FKM) Turel [®] FK (FKM) Turel [®] FG (FKM)
MIL-L-46000	-54°C to +127° C (-65 ° F to +260° F)	Lithium stearate, thickened, synthetic grease for lubricating small gearboxes, automatic weapons, etc.	Turel [®] NE (NBR) Turel [®] NG (NBR) Turel [®] FT (FKM) Turel [®] FK (FKM) Turel [®] FG (FKM)
MIL-G-4343C	3C -65°C to +120° C (-85 ° F to +250° F) Lithium soap thickened synthetic oil based grease compounded with additives to enhance oxidation resistance, rust and corrosion protection, and lubricity at extreme low temperatures		Turel [®] NE (NBR Peroxide Cured)
MIL-G-81827A	-55°C to +232° C (-67° F to +450° F)	Synthetic grease with a synthetic hydrocarbon PolyAlphaOlefin- (P.A.O) type base, containing molybdenum disulfide additives thickened by an inorganic gel	Turel [®] NE (NBR) Turel [®] NG (NBR)
MIL-PRF-32014	-40°C to +175° C (-40° F to +350° F)	A lithium soap thickened, medium viscosity synthetic hydrocarbon grease designed for high speed and temperature applications	Turel [®] NG (NBR, Sulfur-Cured)

¹⁾ These greases have different base stocks that can meet specification requirements. Due to this, elastomer compatibility needs to be confirmed based on the base stock and manufacturer of the grease. For more information on compatibility with these greases please contact your local Trelleborg Sealing Solutions Marketing Company.

Viscosities of Typical Fluids vs. Temperature

Figure 2 Fluid Viscosity – For reference only. For further information, please contact your fluid supplier.

■ Turcon[®]

The Turcon[®] range consists of proprietary materials based on premium-grade Polytetrafluoroethylene (PTFE) fluoropolymer resins. Fillers are added to enhance material properties.

Low Friction

Turcon[®] materials exhibit the lowest coefficient of friction of any known solid and have a uniquely low static coefficient of friction. This results in an extremely low breakout friction, and as the materials do not adhere to their mating surfaces, stick-slip in dynamic applications is eliminated.

Chemical Compatibility

Turcon[®] materials are chemically inert in virtually all media, even at elevated temperatures and pressures. They are therefore compatible with an extremely wide range of solvents, acids and other aggressive media.

Temperature Range

Turcon[®] compounds are available to operate in temperatures from -320°F to +500°F/ -196°C to +260°C and will endure temperature spikes of up to +680°F/ +360°C. Approaching these limits, it is necessary to limit other working conditions.

Temperature Cycling

Turcon[®] materials are not altered or adversely affected by cycling temperatures.

Degradation

Turcon[®] does not contain plasticizers or any other ingredients which could degrade at temperatures below $+572^{\circ}F/+300^{\circ}C$.

Surface Speed

Turcon[®] materials generate far less heat than other materials. This means that the speed of the dynamic surface in contact with the seal can go up to 49.2 ft/s / 15 m/s, depending on seal design and working conditions. Speeds exceeding 65.6 ft/s / 20 m/s have been achieved under certain conditions.

Aging

The properties of Turcon[®] materials do not significantly change over time. They will not become brittle or degrade when exposed to severe-weathering conditions such as heat, light, water or salt spray. This is a benefit when seals are left idle for long periods of time, even years, and still need to perform with complete reliability.

Latest information available at www.tss.trelleborg.com Edition August 2011

Resilience

As they do not have the resilience of elastomers, Turcon[®] materials may experience cold-flow or creep under continued thermal or mechanical stress. To counter this, Turcon[®] seals require an elastomer element or spring to provide a radial force. This compensates for seal wear, cold-flow and the normal variations in gland dimensions due to the range of tolerances or eccentricity.

Wear Resistance

The wear resistance of Turcon[®] materials exceeds the demands of even the most challenging sealing environments. This extends seal life at high speeds, pressures and temperatures.

Radiation

When exposed to radiation, the molecular-chain structure of PTFE can be damaged, lowering tensile strength and potentially leading to seal disintegration. Turcon[®] is therefore not recommended for an accumulated radiation dose above 7 x 10^4 rad/ 7 x 10^2 Gy. In high-radiation service other fluoropolymers are recommended.

Electrical Properties

Turcon[®] has excellent electric properties such as a low dielectric constant and a very high dielectric strength, even at elevated temperatures.

Carbon and Graphite filled Turcon[®] compounds are electrically conductive. Examples are:

Turcon [®] Material	Filler(s)	Surface Resistivity (Ω)	Volume Resistivity (Ω x cm)
Turcon [®] T11	Carbon Graphite	2 x 10 ⁵	2 x 10 ⁴
Turcon [®] T29	Carbon Fiber	6 x 10 ⁴	1 x 10 ⁴
Turcon [®] T40	Carbon Fiber	5 x 10 ¹²	2 x 10 ¹³

Fibers making contact throughout the structure help electrical conductivity through the material.

Turcon[®] materials that do not have fillers, or are low-filled with particles that do not contact have low conductivity. Examples are:

Turcon [®] Material	Filler(s)	Surface Resistivity (Ω)	Volume Resistivity (Ω x cm)
Turcon [®] T01	Virgin	5 X 10 ¹⁷	2 X 10 ¹⁷
Turcon [®] T05	Turcon [®] (Pigment)	7 X 10 ¹⁷	1 X 10 ¹⁷
Turcon [®] T99	Turcon [®] Lubricant	1 X 10 ¹⁷	3 X 10 ¹⁷

Absorption of fluids

The water absorption of PTFE is 0.01 percent and it does not absorb any other fluids to a significant level. One exception is fluorinated-cooling media, for example Freon. These can cause a reversible weight increase of approximately five percent accompanied by dimensional increases of approximately one percent.

Vacuum

PTFE has an extremely low vapor pressure of $<10^{-5}$ mbar at +248°F/ +120°C and can be used safely in vacuum.

Other Characteristics

PTFE will not sustain fire in pure oxygen. Virgin PTFE is physiologically inert. All Trelleborg Sealing Solutions materials are lead and mercury-free.

Total Materials Capability

In this section we have given details of those Turcon[®] materials that are recommended and commonly used in aerospace applications. Other materials are available. For further details on these either contact your local marketing company or go to www.tss.trelleborg.com.

Table IV Turcon[®] Material Physical Properties

TSS Material Code	Description and Description ded Users	Color	Tensile S	itrength	Elongation at Break	Specific Gravity	Hardness
Turcon®	Description and Recommended Usage		ASTM D 4894 (psi)	ASTM D 4894 (Mpa)	ASTM D 4894 (%)	ASTM D 792 (g/cm ²)	ASTM D 2240 (Shore D)
T01	Virgin PTFE, exceeding AMS-R-8791 Profile: Clean system, low-friction and pressure Surface: Steel and chrome		6130	42.3	378	2.16	58
T05	Turcon [®] Profile: All systems, low friction, medium lifetime and pressure Surface: Steel and chrome		5682	39.2	392	2.17	57
то8	Additive: Bronze (high-filled) Profile: Strong extrusion resistance Surface: Steel and chrome		2450	17.0	175	3.88	60
T19	Additive: Mineral fibers and molybdenum disulfide (MoS ₂) Profile: High-pressure and long wear life Surface: Steel, chrome and HVOF*		3506	24.2	226	2.30	63
T25	Additive: Glass fibers and Molybdenum disulfide (MoS ₂) Profile: Rotary applications Surface: Hardened steel, chrome and HVOF*		4562	31.5	286	2.23	59
T29	Additive: Carbon fiber (high-filled) Profile: Long wear life and large extrusion gap Surface: Steel, chrome and HVOF*		3208	22.1	217	2.01	61
T46	Additive: Bronze (medium-filled) Profile: Extrusion-resistant Surface: Hardened steel and chrome		4000	27.6	250	3.10	63
Т99	Additive: Molybdenum disulfide (MoS ₂) Profile: Low-friction, medium pressure, long seal life Surface: Steel, chrome anodized aluminum and HVOF*		5385	37.2	347	2.22	58
M30	Additive: Thermoplastic and lubrication package Profile: Long wear life, high-frequency Surface: Steel, chrome and HVOF*		3000	21.0	250	1.92	55

Data sheets available upon request.

* HVOF = High Velocity Oxygen Fuel thermal spray coating process

This table represents common Trelleborg Sealing Solutions Turcon[®] PTFE material grades. This table is not comprehensive; for additional Turcon[®] PTFE materials and for any Turcon[®] PTFE material questions please contact you local Trelleborg Sealing Solutions marketing company.

Turcon [®] TSS Material Code	Profile	 T01	T05	T08	T19	T25	T29	T46 (T49)	T78	T99	M30
Turcon [®] Excluder [®] DC			•		•					•	
Turcon [®] Slydring [®] II				•	•			•			
Turcon [®] Back-up Ring				•			•				
Turcon [®] AQ-Seal [®] 5					•					•	
Turcon [®] Varilip [®] PDR	R.					•			•		
Turcon [®] Roto Glyd Ring [®]					•	•	•				
Turcon [®] Roto Variseal [®]					•	•	•				
Turcon [®] Dual Piston Ring					•		•			•	٠
Turcon [®] Variseal [®]			•		•		•		•	•	•
Turcon [®] Stepseal [®] 2K					•		•	•			•
Turcon [®] Glyg Ring [®]					•		•	•			•
Turcon [®] T-Seal					•		•				•
Turcon [®] Wedgpak [®] II					•		•			•	•
Turcon [®] Double Delta [®] II					•		•				•
Turcon [®] Plus Seal [®] II					•		•			•	•
Turcon [®] VL Seal [®]					•						•

Table V Recommended Turcon[®] Materials For Seal Designs

The table of general materials and seal recommendations are based on sealing surfaces with hardness of 44 Rockwell C and above that have the recommended Trelleborg Sealing Solutions surface finish. This table is presented as a general guideline for material consideration.

Zurcon[®] Materials

The Zurcon[®] range of materials is made up of high modulus compounds. They are recommended to support and protect sealing elements from conditions such as high-pressure, large clearance gaps and

hardware deflections. These materials have high creep resistance and excellent shear properties giving superior protection from extrusion in Back-up Ring configurations.

Table VI Zurcon[®] Z60 Physical Properties

TSS Material Code			Tensile S	Strength	Elongation at Break	Specific Gravity	Hardness
Zurcon®	Description	Color	ASTM D 638 (psi)	ASTM D 638 (MPa)	ASTM D 638 (%)	ASTM D 792 (g/cm ³)	ASTM D 785 (Shore R)
Z60	Composition: Polyamide and Molybdenum Disulfide (MoS ₂) Profile: T-Seal and corner reinforcement Surfaces: Steel and chrome Formerly HiMod [®] 60		12,000	82.7	50	1.16	120

Table VII Zurcon[®] Z43 and Z40 Physical Properties

Material Code			Tensile S	Strength	Elongation at Break	Specific Gravity	Hardness
Zurcon®	Description	Color	ASTM D 1457 (psi)	ASTM D 1457 (MPa)	ASTM D 1457 (%)	ASTM D 621 (Deformation @ 2,000 psi 73°F/ 23°C for 24 hrs)	ASTM D 785 (M Scale)
Z43	Composition: High modulus thermoplastics, PTFE and carbon Profile: Bearing, Stakbak [®] and corner reinforcement Surfaces: Steel, chrome and ceramic Formerly HiMod [®] 552		11,750	81	25	1.4	95
Z40	Composition: Virgin PEEK™ to Mil-R-46183, Poly-Ether-Ether- Ketone thermoplastic Formerly HiMod [®] 550		13,000	90	10-25	1.3	99

Note:

The testing of tensile properties is based on the micro-tensile specimen per ASTM D 1457/D 4894, pulled at 2 inches/ 50 mm per minute with an initial jaw separation at $0.875 \pm .005$ inches/ 0.127 mm. Tensile properties are determined in accordance with the procedures described in ASTM D 638.

The values in the tables above are nominal, intended for engineering reference only. These values are not to be used as a specification requirement. Specified values can only be obtained from each batch.

Table VIII Zurcon[®] Design Data

	Technical Data		
Material	Temperature °F/ °C	Velocity	Application
Zurcon [®] Z60	-65 to +250°F -54 to +121°C	16 ft/s 4.9 m/s	Good extrusion and wear resistance, primarily used for piston rings and Wear Rings
Zurcon [®] Z43	-76 to +500°F -60 to +260°C	16 ft/s 4.9 m/s	Excellent extrusion and wear resistance, high temperature and load capabilities
Zurcon [®] Z40	-76 to +500°F -60 to +260°C	16 ft/s 4.9 m/s	Excellent extrusion and wear resistance

Total materials capability

In this section we have given details of those Zurcon[®] materials that are recommended and commonly used in aerospace applications. Other materials are

available. For further details on these either contact your local marketing company or go to www.tss.trelleborg.com.

■ Orkot[®]

Orkot[®] materials are made of special thermoplastic resin impregnated with a fabric composite of fine weave fibers.

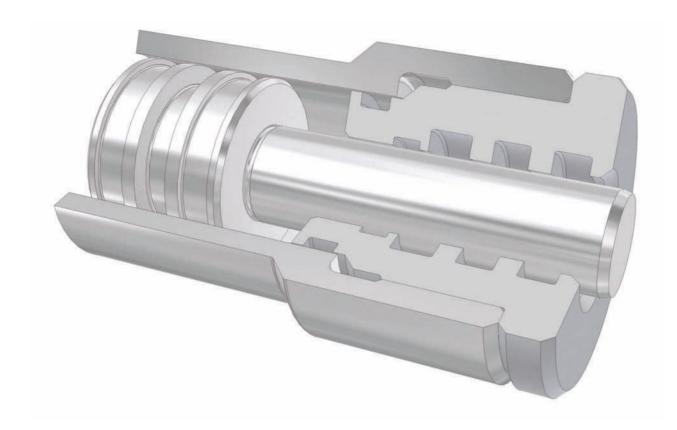
Slydring[®] Bearings

Where heavy-duty bearing systems are required, Slydring[®] bearings made from Orkot[®] material are an established solution worldwide. They offer excellent service life, high compressive strength, heat

Table IX Orkot[®] Physical Properties

and chemical resistance along with very low friction characteristics. For rod and piston applications in dynamic hydraulic systems where high side loads are present, Orkot[®] Slydring[®] bearings can act as guide rings to maintain correct positioning and concentricity of reciprocating and rotating components. Use of Orkot[®] Slydring[®] prevents metal-to-metal hardware contact between moving parts and eliminates scoring and fretting of hardware, resulting in improved system life and reliability.

Material Code			Tensile Strength		Elongation at Break	Specific Gravity	Hardness
Orkot®	Description	Color	ASTM D 638 (psi)	ASTM D 638 (MPa)	ASTM D 638 (%)	ASTM D 792 (g/cm ³)	Rockwell M
C324	Vinylester resin and meta aramid fine mesh		8,700	60.0	N/A	1.3	105
C380	Polyester resin, polyester fine mesh and PTFE		8,000	55.2	N/A	1.3	100


Table X Orkot[®] Design Data

Material	Technical	Data			
	Temperature	Velocity	Application		
Orkot [®]	-328 to +482°F	3.280 ft/s	High temperatures. For use in Phosphate Ester or high-temperature applications. Test Report R1081 available upon request.		
C324	-200 to +250°C	1 m/s			
Orkot [®]	-328 to +266°F	3.280 ft/s	High wear resistance with good sliding properties. For use in mineral, synthetic hydrocarbon-based oils and grease only.		
C380	-200 to +130°C	1 m/s			

Hardware Expertise

The functioning of seals not only depends on the seal itself and its operating conditions, but also on other factors. Over the years Trelleborg Sealing Solutions has developed an in-depth knowledge of applied materials technology. To maximize system performance, we can advise on relevant issues related to the hardware into which seals are fitted and significant properties of mating surfaces.

In this section we give detailed recommendations on surface finishes, outlining shaft materials typically used in contact with polymer seals and the properties of mating part surface coatings and platings. We also provide some basic hardware information. To find out more contact your local Trelleborg Sealing Solutions marketing company. It is best to involve them at concept stage. This allows them to advise on the design of the component or housing to ensure that it will function as effectively as possible and give maximum seal life and performance.

Surface Finishes

Surface finish quality relates directly to dynamic seal performance. Properly defining, measuring and controlling surface finish quality is critical to the functional reliability and service life of a seal.

Developments in surface finish measurement equipment and capabilities, along with finishing methods, have resulted in functional seal testing being performed to determine and verify surface finish recommendations for improved seal performance.

Standard Recommendations

Given below are two sets of standard recommendations that apply to linear hydraulic external seals (rod), dynamic sealing surfaces. The first is for HVOF (High Velocity Oxygen Fuel) applied coatings like Tungsten Carbide Cobalt-Chrome (W_c - C_o - C_r). The second is for bare steel, aluminum or chrome plating. Within the product sections you will find further product specific surface finish recommendations.

Table I Surface Finish Recommendations for HVOF Applied Surfaces

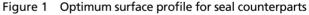
Measurement	Standard			
weasurement	Recommendation			
R _a	< 5 μin / 0.12 μm			
R _p	\leq 8 µin max. / 0.2 µm maximum			
R _z (R _{tm})	40 µin / 1.0 µm maximum			
T _p (M _r)	70 - 90% @ depth of p = 0.25 R_z (Rtm) relative to a ref. line c = 5% tp			
R _{sk}	-0.1 to -3			

Table II Surface Finish Recommendations, Chrome Plating, Anodized Surfaces, Bare Metals (Hardened) and Others (Non-HVOF)

Measurement	Standard			
weasurement	Recommendation			
R _a	< 8 μin / 0.2 μm			
R _p	\leq 24 µin / 0.6 µm maximum			
Rz	40 μin /1.0 μm maximum			
Tp	50 - 75% @ depth of p = 0.25 R_z (Rtm) relative to a ref. line c = 5% tp			
R _{sk}	-0.5 to -1.5			

For internal seals (piston) the surface finish should be less than 8 μin / 0.2 $\mu m.$

For surface finish recommendations on the seal groove sidewalls and groove bottoms as well as static seal interfaces, please follow recommendations in SAE AS4716 and AS5857 seal gland standards. If you have any questions related to surface finish and methods please contact your local Trelleborg Sealing Solutions marketing company.


Pockets and Valleys

Values are given for the high end of the bearing ratio. The seal surface should not be completely closed or void of adequate pockets and valleys. These are needed for seal lubrication retention and build-up of operating fluid film. A bearing ratio of 100 percent is not desirable, but it can be quite high for HVOF-coated surfaces. The values of Valley Roughness (R_v) need to be evaluated during the set-up of the production process.

Optimum Profile

The optimum surface profile for seal counterparts is shown in figure 1. A high concentration and magnitude of peaks on a surface can cause excessive seal wear, promoting unwanted leakage and egression. Surfaces relatively void of peaks but including valleys for lubrication retention are more suitable for sealing applications.

Direction of Lay

Each method used to obtain a specific surface finish, such as turning, grinding, honing, ball peening, polishing or superfinishing, produces a characteristic direction or lay to the surface. This can have an effect on sealing performance and wear patterns in certain applications.

To obtain the best seal performance, avoid finishing methods which promote the formation of leak paths in your application. For example, avoid a strong axial lay in a reciprocating rod seal application or a definite spiral pattern on the shaft in a rotary application.

Mating Surface Hardness

The hardness of the surface that mates with the seal affects the seal's performance in several ways.

If mating materials are too soft, the seal will burnish or damage the surface. A harder material improves wear life, resisting damage by the seal. Hard surfaces also have a tendency to lower the running friction of a seal.

A seal will polish its mating surface, especially if it is a softer metal. For example, a reciprocating rod made of stainless steel with a hardness of 28 to 30 Rockwell C and a finish of 25 μ in/ 0.635 μ m R_a will generally be polished by the seal to a finish of 12 μ in/ 0.305 μ m R_a or better, over a short period of time. Seal friction and wear will then decrease accordingly. Materials that are harder then 44 Rockwell C do not polish as easily.

Longer-lasting tougher Turcon[®] seal materials such as thermoplastic-filled Turcon[®] M30 and Carbon fiber-filled T29 should only be specified against harder mating surfaces.

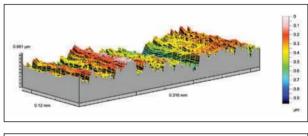
When an application requires the longest possible wear life under moderate to severe conditions, the seal material should be one of the harder, highly-filled Turcon[®] blends.

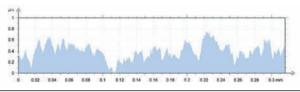
Running In

In standard hydraulic systems, the seals and mating surfaces have an initial period of high wear. This phase, know as the run-in, ends once the peaks on the mating surface are broken off and the surface and seal reach an equilibrium state. Provided the seals are sufficiently lubricated, the wear rate drops significantly once the equilibrium state is reached.

By defining the surface finish using multiple surface finish parameters, the overall surface profile can be controlled more precisely. This reduces the sealing system run-in period, and once equilibrium between the seal and sealing surface is reached, gives a more optimal surface finish for leakage control, wear resistance and service life.

The abrasive nature of a rough finish can cause excessive seal wear during the early run-in period. Therefore, the harder the mating surface, the more important it is to start with the correct surface finish.

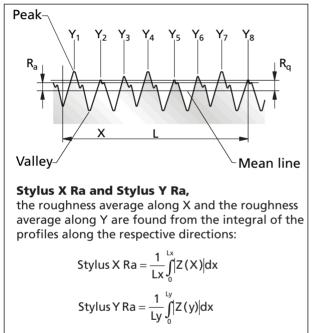

Substrates


Seals run well against unplated surfaces at moderate speeds and pressures. In high-speed rotary or highpressure reciprocating applications, harder surfaces are preferable.

Typical mating surface materials are listed below. These materials can also act as substrates for plating or coating to achieve higher hardness values.

Platings and Coatings

It is important to consider the ability of the substrate to support the plating. For example, when a highpressure load is exerted on a seal running against hardchrome plating supported by a soft substrate, such as 300 series Stainless Steel, the plating may peel or crack and then abrade the seal. A better substrate would be Stainless Steel Type 440C (hardened to 44 Rockwell C) or an alloy steel such as 4340 in the fully-hardened condition.


The surface finish measurement illustrations above clearly show the difference between threedimensional (3D) and two-dimensional (2D) surface finish topography. The correct surface finish profile is critical to proper seal performance.

Surface Finish Measurement Methods

R_a – Arithmetic Average Roughness

Roughness averages provide a simple value for accept/ reject decisions for surface finishes. Arithmetic average roughness, or R_a, is the arithmetic average height of roughness-component irregularities (peak heights and valleys) from the mean line, measured within the sampling length, L. See Figure 2.

The measurements are taken by the fine point of the stylus on a profilometer, which traverses the sampling length on the surface being measured.

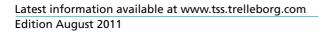

Y = individual measured peak height

Figure 2 Surface Finish – R_a versus R_a

R_a – Geometric Average Roughness

R_a is the current term for what was formerly called rootmean-square or RMS. R_q is more sensitive to occasional highs and lows, making it a valuable complement to R_a . R_g . It is the geometric average height of roughnesscomponent irregularities from the mean line measured within the sampling length, L. Compare to R_a in Table III.

The main difference in the two scales is that R_{α} amplifies occasional high or low readings, while R_a simply averages them. For a given surface, therefore, the R_a value will be higher than the R_a value by approximately 11 percent. A surface finish that measures 2 µin/ 0.051 μ m R_a is equivalent to approximately 18 μ in/ 0.457 μ m R_a.

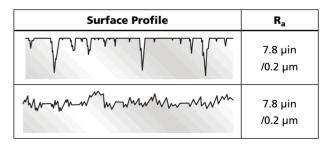
R _a , A	R _a , AA, CLA		Rq or RMS		
Inch	Metric	Inch	Metric	Swiss	
(µin)	(µm)	(µin)	(µm)	Norm ¹⁾	
0.9	0.023	1.0	0.025		
1.0	0.025	1.1	0.028	N1	
1.8	0.046	2 .0	0.051		
2.0	0.051	2.2	0.056	N2	
3.6	0.091	4.0	0.102		
4.0	0.102	4.4	0.112	N3	
5.4	0.137	6.0	0.152		
7.2	0.183	8.0	0.203		
8.0	0.203	8.9	0.226	N4	
10.8	0.274	12.0	0.305		
14.4	0.366	16.0	0.406		
16.0	0.406	17.8	0.452	N5	
28.8	0.732	32.0	0.813		
32.0	0.813	35.5	0.902	N6	
56.8	1.443	63.0	1.600		
63.0	1.600	69.9	1.775	N7	

Ra : Arithmetic average roughness

AA : Arithmetic Average

CLA : Center Line Average

: Geometric average roughness


R_q RMS : Root-mean-square

The German-Swiss Norm is a series of roughness-1) grade numbers used to avoid confusion with numerical values of other types.

Improved Measurement Methods

The R_a measurement does not give a true picture of the real surface profile which is also affected by the finish. An open profile or peak structure can seriously affect seal performance as its jagged structure can cut and nick the seal surface. On the other hand, the closed profile form or valley structure, gives improved seal performance. This is because the valleys retain fluid and lubricate the running seal surface. Please see Table IV.

Table IV R_a Comparison

Even with identical R_a values, the resulting seal performance will be very different.

Table III Surface finish conversion table

An improved surface measurement method is described in ISO 13565-1/-2/-3, including the peak, valley and material ratios as described below:

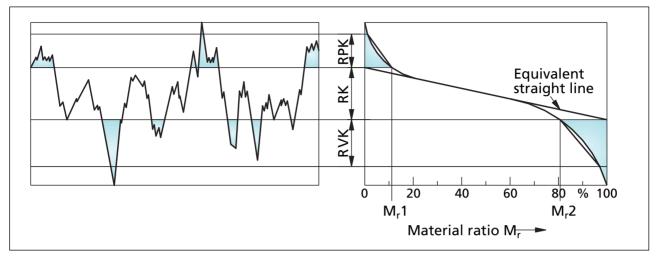


Figure 3 Abbot Curve

R_k Core roughness The depth of the roughness core profile

M_r Material ratio

M_{r1} in percent

The material portion M_{r1} is determined by the intersecting line that separates the protruding peaks from the roughness core profile.

$\mathbf{M}_{\mathbf{r2}}$ in percent

The material portion M_{r2} is determined by the intersecting line that separates the valleys from the roughness core profile.

R_{pk} Reduced peak height

The average height of the protruding peaks above the roughness core profile

 $\mathbf{R}_{\mathbf{vk}}$ Reduced valley depth The average depth of the profile valleys projecting through the roughness core profile

The harder the material the more important it is to reduce the peak height R_{pk} . If the mating surface is ceramic, the R_{pk} value must be down to 2 µin/ 0.051 µm otherwise the hard peaks will cut into the seal surface.

Other surface parameters are skewness and kurtosis, which give a more detailed picture of the surface.

Hardware Expertise

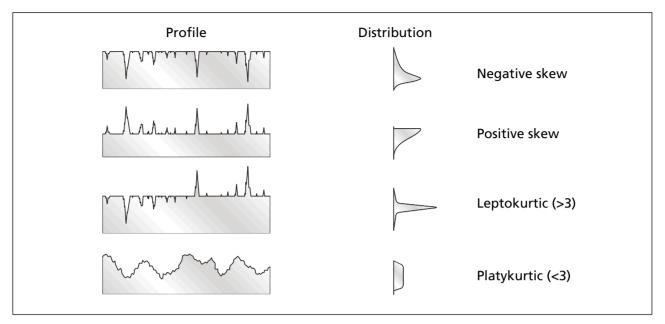


Figure 4 Surface Measurement Visualized

The optimum view of the surface structure is a 3-dimensional computerized picture showing not only peak, core and valley but also direction of ridges and channels in the surface structure. Such pictures can be very valuable in evaluating seal performance. This method of measurement will expose widely varying surface profiles depending on base materials, platings or coatings and the process used to produce the surface.

Parameter	Unworn μin / μm	Worn μin /μm
c	4.331	8.268
Sa	0.11	0.21
c	3.543	4.331
S _{pk}	0.09	0.11
c	9.843	14.567
S _k	0.25	0.37
c	15.748	38.583
S _{vk}	0.40	0.98

Table V Properties of Surface Structure

S denotes 3-dimensional surface texture characteristics. R denotes 2-dimensional surface texture characteristics. E.g. S_a is the 3-D equivalent to R_a .

To obtain measurements as shown in table V, a sophisticated filter technique and software program is required that can convert the mathematical rounding. This technique is not readily available in industry, but is available at some universities and technical institutes.

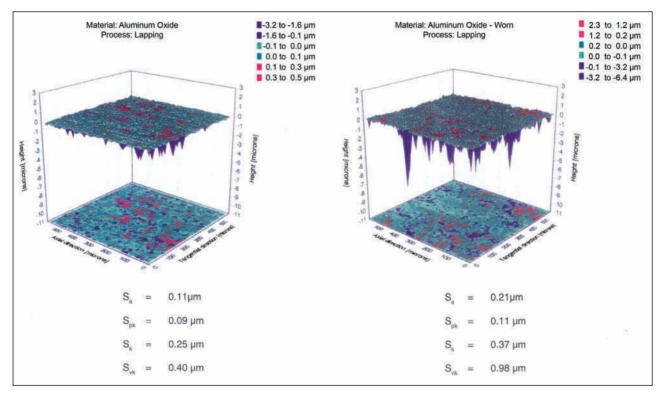


Figure 5 Surface Structure

Shaft Materials

Table VI Typical shaft materials used in contact with polymer seals

Madavial		Typical Hardness, RC				
	aterial	Annealed Hardened		- Applications		
	15-5 PH	35	46	General purpose providing high strength, good corrosion resistance and mechanical properties with moderate hardness. Good for moderate wear applications		
	17-4 PH	35	44	General-purpose with moderate corrosion resistance. Material can be hardened for moderate-wear applications.		
Stainless	Туре 303	-	20 ¹⁾	Free-machining and very soft with moderate corrosion resistance. For low speeds and pressures		
Steel	Туре 304	-	28 ¹⁾	Soft material with moderate corrosion resistance. For use at low speeds and pressures		
	Туре 316	-	28 ¹⁾	Soft material with excellent corrosion resistance. For use at low speeds and pressure.		
	Туре 440С	22	44	Heat-treated material is the hardest of all Stainless Steels but has lower corrosion resistance than 300 series Stainless Steel. For higher speeds and pressures		
Carbon Steel	SAE 1045	19	58	Good mechanical properties with higher strength than other low-carbon steels. Use in non-corrosive media only.		
Allow Staal	4140	13	50	General-purpose applications in non-corrosive media. For moderate speeds and pressures		
Alloy Steel	4340	13	50	General service with better mechanical properties than Alloy 4140		
Tool Steel	D-2	-	62	High hardness and wear-resistance but limited corrosion resistance. For high speeds at moderate pressures.		
	Hard-anodized aluminium 6061-T6	-	70+	Hard-anodized aluminium makes an excellent low-friction bore surface for reciprocating piston-seal applications. Not recommended for rotary services.		
Other Metals	Bronze	40 Rockwell B	85 Rockwell B	For light-duty service in slow speeds with low pressures and where friction and corrosion are not concerns		
Wietais	Mild Steel	150 Brinell	-	Light-duty service in non-corrosive media only		
	Titanium	36 Rockwell C		Hard material with high corrosion resistance. Good for high-pressure and speed		
Non-	Ceramic	7	0	For high wear resistance at high pressures or high speeds and for low friction against Turcon [®] seals		
Metallic	Sapphire	9 Mohs	²⁾ Scale	Very hard, chemically-inert material with ability to obtain flame-polished finishes less than 1 $\mu in/$ 0.025 μm R_a		

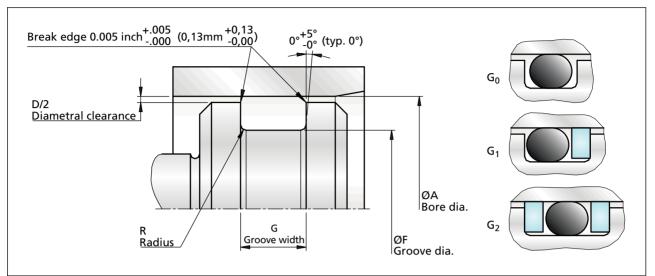
The information supplied above is intended only as a guide. We strongly recommend that you test the selected material in the application before production use.

¹⁾ Series 300 Stainless Steel cannot be hardened by heat treatment. Values shown are for 30 percent cold-worked material.

Plating and Coating

Table VII Properties of typical types of plating and coatings used in contact with polymer seals

Coating or plating type		Military specification	Hardness Rockwell C	Suggested thickness	Corrosion resistance	Abrasiveness to seal	Comments
Chrome	Hard chrome	QQC 320B Class 2E	65	0.0008/0.0050 in 0.020/0.127 mm	Fair to Good	High	Wear-resistant for light- duty. Not recommended for fast-rotary or corrosive applications.
plating	Thin dense chrome	AMS 2438	70	0.0002/0.0006 in 0.005/0.015 mm	Excellent	Low	Higher wear resistance and lower friction than conventional chrome in light to moderate speeds.
Electrology	Nickel as deposited	MIL-C-26074B	48-52	0.0010 in minimum 0.0254 mm minimum	Excellent	Low	Excellent for corrosive applications in light to moderate speeds and pressures.
Electroless nickel plating	Nickel fully hardened	MIL-C-26074B	58-70	0.0010 in minimum 0.0254 mm minimum	Good	High	Harder but more abrasive than as-deposited nickel. Not recommended for high- speed rotary applications.
Plasma spray	Chromium oxide	See note 2.	71	0.0050/0.0300 in 0.127/0.762 mm	Excellent	Low	Recommended when wear life is the primary concern. Not recommended for high-shock loads.
coating	Aluminium oxide	MIL-P-83348 ²⁾ AMS 2448	60-69	0.0050/0.0300 in 0.127/0.762 mm	Excellent	Low	Lower-cost, less wear-resistant but greater ductility than chromium-oxide coatings.
HVOF ¹⁾	Tungsten Carbide	MIL-P-83348 ²⁾ AMS 2448	67-74	0.0050/0.0300 in 0.127/0.762 mm	Excellent	Low	High wear- resistance, with higher bonding strength. For high-speed and pressure combinations.



Anodizi	Hard anodized aluminium	MIL-A-8625C Type III	Over 70	0.0005/0.0045 in 0.013/0.114 mm	Excellent	Low	Excellent bore material in piston-seal applications as a low-friction mating surface.
Therma spray	I Triballoy 400 & 800	N/A	55	0.001/0.02 in 0.025/0.508 mm	Excellent	High	Hard to get better than a 14 Ra so not recommended for most dynamic seal applications.
Nitridin	Titanium g nitride (TiN)	N/A	Up to 70	0.000039 / 0.000197 in 0.001/0.005mm	Excellent	High	Wear resistant, low friction and resists corrosion. Thickness of coating can be an issue related to useful wear- life.

The information supplied above is intended only as a guide. Testing of the selected material in actual service conditions is recommended to determine the suitability of a plating or coating for a specific application.

- ¹⁾ HVOF = High Velocity Oxygen Fuel. This coating system uses high-pressure, high-temperature, high-velocity spray guns to improve coating density, hardness and bond strength.
- ²⁾ The military specification is noted for reference only. Plasma spray and HVOF coatings are typically produced using industry standards developed by certain companies whose standards normally meet or exceed the military specifications.

■ Hardware Dimensions per AS4716 BORE

Figure 6 Installation Drawing for BORE

Table	VIII	Groove	Dimensions ,	BORE	per	AS4716
-------	------	--------	---------------------	------	-----	--------

						Bore Si	izes pe	r AS4716						
			Inc	h						mm				
Dash	øA	øF	D	R		ove Wi		ø A	øF	D	R		ove W	
No	Bore	Groove	Diameter	Radius	+0	.010/-0.0	000	Bore	Groove		Radius	+0	.25/-0	00
	Diameter	Diameter	Clearance					Diameter	Diameter					
			Maximum		G ₀	G ₁	G ₂			Maximum		G ₀	G ₁	G ₂
	+0.001	+0.000						+0.025	+0.000					
	-0.000	-0.001						-0.000	-0.025					
004	0.190 0.221	0.076		0.015	0.098	0.154	0.210	4.83 5.61	1.93 2.92		0.38	2 40	2.01	E 22
005	0.221	0.115 0.129	0.004	0.015	0.098	0.154	0.210	5.97	3.28	0.10	0.38	2.49	3.91	5.33
000	0.255	0.129	0.004	0.005	0.103	0.164	0.220	6.76	4.01	0.10	0.13	2.62	4.17	5.59
007	0.200	0.158		0.005	0.105	0.104	0.220	0.70	4.01		0.15	2.02	4.17	5.55
008	0.297	0.189						7.54	4.80					
009	0.329	0.220						8.36	5.59					
010	0.360	0.250						9.14	6.35					
011	0.422	0.312	0.004					10.72	7.93	0.10				
012	0.485	0.375						12.32	9.53					
	+0.002 -0.000	+0.000						+0.05	+0.00					
013	0.550	-0.002 0.441						-0.00 13.97	-0.05 11.20					
013	0.550	0.441		0.015	0.094	0.150	0.207	15.57	12.80		0.38	2.39	3.81	5.26
014	0.675	0.566		0.015	0.054	0.150	0.207	17.15	14.38		0.50	2.55	5.01	5.20
016	0.738	0.629		0.005	0.099	0.160	0.217	18.75	15.98		0.13	2.51	4.06	5.51
017	0.800	0.691		0.005	0.055	0.100	0.2.17	20.32	17.55		0.15	2.51		5.51
018	0.863	0.753						21.92	19.13					
019	0.925	0.815						23.50	20.70					
020	0.991	0.881	0.005					25.17	22.38	0.13				
021	1.053	0.943						26.75	23.95					
022	1.116	1.006						28.35	25.55					
023	1.178	1.068						29.92	27.13					
023	1.178	1.131						31.52	27.15					
024	1.303	1.193						33.10	30.30					
026	1.366	1.256						34.70	31.90					
027	1.428	1.318						36.27	33.48 35.08					
028	1.491	1.381						37.87	35.08					

Recommended for static applications only.

						Bore Si	zes pe	r AS4716						
			Inc	h						mm				
Dash	ø A	øF	D	R	Gro	ove Wi	dth	ø A	øF	D	R	Gro	ove W	lidth
No	Bore	Groove	Diameter	Radius	+0	.010/-0.0	000	Bore	Groove	Diameter	Radius	+0	.25/-0	.00
	Diameter	Diameter	Clearance					Diameter	Diameter	Clearance				
			Maximum		G ₀	G ₁	G ₂			Maximum		G_0	G ₁	G ₂
	+0.001	+0.000						+0.025	+0.000					
	-0.000	-0.001						-0.000	-0.025					
104	0.297	0.128						7.54	3.25					
105 106	0.329 0.360	0.158 0.187	0.004					8.36 9.14	4.01 4.75	0.10				
107	0.300	0.215	0.004					9.93	5.46	0.10				
108	0.422	0.246						10.72	6.25					
109	0.485	0.308						12.32	7.82					
	+0.002	+0.000						+0.05	+0.00					
110	-0.000 0.550	-0.002 0.379						-0.00 13.97	-0.05 9.63					
111	0.613	0.441						15.57	11.20					
112	0.675	0.502						17.15	12.75					
113	0.738	0.565						18.75	14.35					
114	0.800	0.627						20.32	15.93					
115	0.863	0.689						21.92	17.50					
116	0.805	0.089						23.50	19.08					
117	0.991	0.817						25.17	20.75					
118	1.053	0.879						26.75	22.33					
119	1.116	0.942	0.005					28.35	23.93	0.13				
120	1.178	1.003						29.92	25.48					
121	1.241	1.065						31.52	27.08					
122	1.303	1.128						33.10	28.65					
123	1.366	1.191						34.70	30.25					
124	1.428	1.253						36.27	31.83					
125	1.491	1.316						37.87	33.43					
126	1.553	1.378						39.45	35.00					
127	1.616	1.441						41.05	36.60					
128	1.678	1.503						42.62	38.18					
129	1.741	1.566						44.22	39.78					
130	1.805	1.631						45.85	41.43					
131	1.867	1.693						47.42	43.00					
132	1.930	1.756						49.02	44.60					
133	1.992	1.818						50.60	46.18					
134	2.055	1.881	0.000	0.015		0.400		52.20	47.78	0.45	0.38	2 50	1.65	
135	2.118	1.944	0.006	0.005	0.141	0.183	0.245	53.80	49.38	0.15	0.13	3.58	4.65	6.2
136	2.118	2.006		0.005				55.37	50.95		0.15			
137	2.243	2.069						56.97	52.55					
138	2.305	2.131						58.55	54.13					
139	2.368	2.194						60.15	55.73					
140	2.430	2.256						61.72	57.30					
140	2.430	2.230						63.32	58.90					
142	2.555	2.381						64.90	60.48					
143	2.618	2.444						66.50	62.08					
144	2.680	2.506	0.007					68.07	63.65	0.40				
145	2.743	2.569	0.007					69.67	65.25	0.18				
145	2.743	2.569						71.25	66.83					
147	2.868	2.694						72.85	68.43					
148	2.930	2.756						74.42	70.00					
149	2.993	2.819						76.02	71.60					

Ì						Dore Si	zes pe	r AS4716						
			Inc	h						mm				
Dash	ø A	øF	D	R		ove Wi		ø A	øF	D	R		ove W	
No	Bore	Groove	Diameter	Radius	+0.	.010/-0.0	000	Bore	Groove	Diameter	Radius	+0	.25/-0.	.00
	Diameter	Diameter	Clearance				-	Diameter	Diameter	Clearance		_		
			Maximum		G ₀	G ₁	G ₂			Maximum		G ₀	G ₁	G ₂
	+0.002 -0.000	+0.000 -0.002						+0.05 -0.00	+0.00 -0.05					
210	0.991	0.750	-					25.17	19.05					
211	1.053	0.812						26.75	20.63					
212	1.116	0.874						28.35	22.20					
213	1.178	0.936						29.92	23.77					
214	1.241	0.999						31.52	25.38					
215	1.303	1.061						33.10	26.95					
216	1.366	1.124	0.005					34.70	28.55	0.13				
217	1.428	1.186						36.27	30.12					
218	1.491	1.249						37.87	31.73					
219	1.553	1.311						39.45	33.30					
220 221	1.616 1.678	1.374 1.436						41.05 42.62	34.90 36.47					
222	1.741	1.499						44.22	38.08					
223	1.867	1.625						47.42	41.28					
224	1.992	1.750						50.60	44.45					
225	2.118	1.876	0.006					53.80	47.65	0.15				
226	2.243	2.001						56.97	50.83					
227	2.368	2.126						60.15	54.00					
228 229	2.493 2.618	2.251 2.376						63.32 66.50	57.18 60.35					
230	2.743	2.501						69.67	63.53					
231	2.868	2.626						72.85	66.70					
232	2.993	2.751						76.02	69.88					
233 234	3.118 3.243	2.876 3.001						79.20 82.37	73.05 76.23					
254	5.245	5.001		0.025				02.57	70.25		0.64			
235	3.368	3.126	0.007		0.188	0.235	0.304	85.55	79.40	0.18		4.78	5.97	7.72
236	3.493	3.251		0.010				88.72	82.58		0.25			
237	3.618	3.376						91.90	85.75					
238	3.743	3.501						95.07	88.93					
239	3.868	3.626						98.25	92.10					
240	3.993	3.751						101.42	95.28					
241	4.118	3.876						104.60	98.45					
242	4.243	4.001						107.77	101.63		-			
243 244	4.368 4.493	4.126 4.251						110.95 114.12	104.80 107.98					
245	4.640	4.076						447.00		0.20				
245 246	4.618 4.743	4.376 4.501	0.008					117.30 120.47	111.15 114.33					
240	4.868	4.626						120.47	117.50					
325	1.867	1.495						47.42	37.97					
326	1.992	1.620						50.60	41.15					
327	2.118	1.746	0.006					53.80	44.35	0.15				
328	2.243	1.871						56.97	47.52					
329	2.368	1.996						60.15	50.70					
330	2.493	2.121						63.32	53.87					
331	2.618	2.246						66.50	57.05					
332 333	2.743 2.868	2.371 2.496						69.67 72.85	60.22 63.40					
334	2.868	2.496		0.035				72.85	66.57		0.89			
	2.555	2.021	0.007	0.055	0.281	0.334	0.424	70.02	00.57	0.18	0.85	7.14	8.48	10.77
335	3.118	2.746		0.020			= .	79.20	69.75		0.51			
336	3.243	2.871						82.37	72.92					
337	3.368	2.996						85.55	76.10					
338	3.493	3.121	1	1	1	1		88.72	79.27					

Metric Sizes

						Bore Si	zes pe	r AS4716						
			Inc	h			-			mm				
Dash	ø A	øF	D	R		ove Wi		ø A	øF	D	R	Groo	ove W	lidth
No	Bore	Groove	Diameter	Radius	+0.	010/-0.0	000	Bore	Groove	Diameter	Radius	+0	.25/-0	.00
	Diameter	Diameter	Clearance					Diameter	Diameter	Clearance				
			Maximum		G ₀	G ₁	G ₂			Maximum		G ₀	G ₁	G ₂
	+0.002 -0.000	+0.000 -0.002						+0.05 -0.00	+0.00 -0.05					
340	3.743	3.371						95.07	85.62					
341	3.868	3.496						98.25	88.80					
342	3.993	3.621	0.007					101.42	91.97	0.18				
343 344	4.118 4.243	3.746 3.871		0.035				104.60 107.77	95.15 98.32		0.89			
345	4.368	3.996		1	0.281	0.334	0.424	110.95	101.50		I 0.05	7.14	8.48	10.77
				0.020							0.51			
346 347	4.493 4.618	4.121 4.246	0.008					114.12 117.30	104.67 107.85	0.20				
348	4.018	4.240	0.008					120.47	111.02	0.20				
349	4.868	4.496						123.65	114.20					
	+0.003	+0.000						+0.08	+0.00					
425	-0.000 4.974	-0.003 4.497						-0.00 126.34	-0.08 114.22					
426	5.099	4.622						120.54	117.40					
427	5.224	4.747						132.69	120.57					
428	5.349	4.872						135.86	123.75 126.92					
429	5.474	4.997						139.04	120.92					
430	5.599	5.122						142.21	130.10					
431	5.724	5.247						145.39	133.27					
432 433	5.849 5.974	5.372 5.497	0.009					148.56 151.74	136.45 139.62	0.23				
434	6.099	5.622						154.91	142.80					
		0.0000												
435	6.224	5.747						158.09	145.97					
436 437	6.349 6.474	5.872 5.997						161.26 164.44	149.15 152.32					
437	6.724	6.247						170.79	158.67					
439	6.974	6.497						177.14	165.02					
440	7 224	C 747						102.40	171 27					
440 441	7.224 7.474	6.747 6.997		0.035				183.49 189.84	171.37		0.89			
442	7.724	7.247		1	0.375	0.475	0.579	196.19	184.07		I	9.53	12.07	14.71
443	7.974	7.497		0.020				202.54	190.42		0.51			
444	8.224	7.747						208.89	196.77					
445	8.474	7.997						215.24	203.12					
446	8.974	8.497	0.010					227.94	215.82	0.25	1			
	+0.004 -0.000	+0.000 -0.003						+0.10 -0.00	+0.00 -0.08					
447	9.474	8.997						240.64	228.52					
448	9.974	9.497						253.34	241.22					
449	10.474	9.997						266.04	253.92					
450 451	10.974 11.474	10.497 10.997						278.74 291.44	266.62 279.32					
1.7								231.44	215.52					
452	11.974	11.497						304.14	292.02					
453 454	12.474	11.997	0.011					316.84	304.72	0.28				
454 455	12.974 13.474	12.497 12.997						329.54 342.24	317.42 330.12					
456	13.974	13.497						354.94	342.82					
453	1 4 4 7 4	12 007						267.64	255 52					
457 458	14.474 14.974	13.997 14.497						367.64 380.34	355.52 368.22					
458	15.474	14.497						393.04	380.92					
460	15.974	15.497						405.74	393.62					

Metric Sizes

The above dimensions are for reference only.

600 Series (3/8") cross section AS4832 recommended for diameters above -442. Dash numbers are size codes.

■ Hardware Dimensions per AS4716 ROD

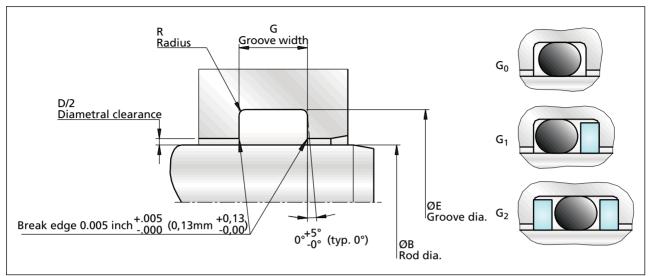


Figure 7 Installation Drawing for ROD

Table IX Groove Dimensions, ROD per AS4716

$ \begin{array}{ $							Rod Si	zes per	AS4716						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				Inc	h						mm				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				_											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	No				Radius	+0	.010/-0.0	000				Radius	+0	.25/-0.	00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Diameter	Diameter			-			Diameter	Diameter			_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				Iviaximum		G ₀	G ₁	G ₂			Iviaximum		G ₀	G ₁	G ₂
004 005 0.108 0.076 0.108 0.190 0.217 0.032 0.232 0.015 1 0.098 1 0.154 1 0.217 0.38 1 2.49 3.91 007 0.154 0.224 0.004 0.005 0.103 0.164 0.220 3.91 6.71 0.10 0.13 2.62 4.17 008 0.185 0.294 0.004 0.103 0.164 0.220 3.91 6.71 0.10 0.13 2.62 4.17 008 0.185 0.294 0.004 0.104 0.164 0.220 3.91 6.71 0.10 0.13 2.62 4.17 008 0.185 0.294 0.004 - - - 6.30 9.12 0.10 - </td <td></td>															
005 0.108 0.217 0.015 0.098 0.154 0.210 2.74 5.51 3.12 5.89 1 <th1< th=""> <th1< th=""></th1<></th1<>	004														
006 007 0.123 0.154 0.232 0.264 1 0.004 1 0.005 1 0.103 1 0.164 1 0.220 3.12 3.91 5.89 6.71 1 0.10 1 0.13 1 2.62 1 4.17 008 0.185 0.294 0.004 - - - - - 0.10 0.10 0.13 2.62 4.17 008 0.185 0.294 0.004 - - - - - - - 0.10 0.13 2.62 4.17 009 0.217 0.327 0.327 0.004 -					0.015	0 000	0.154	0.210				0.20	2 40	2 01	5.33
007 0.154 0.264 0.004 0.005 0.103 0.164 0.220 3.91 6.71 0.10 0.13 2.62 4.17 008 0.185 0.294 0.004 - - - 5.51 8.31 -					0.015	0.098	0.154	0.210				0.38	2.49	3.91	5.55
0.00 0.10 0.004 0.004 0.004 0.10 0.10 0.10 0.10 008 0.185 0.294 0.004 - - 4.70 7.47 0.10 -					0 005	0 103	0 164	0 2 2 0				0 13	2 62	A 17	5.59
008 0.185 0.294 4.70 7.47 5.51 8.31 010 0.248 0.359 0.004 5.51 8.31 0.10 0.10 011 0.310 0.421 0.004 0.787 10.69 0.10 012 0.373 0.484 0.004 9.47 12.29 0.10 013 0.435 0.545 0.545 0.015 0.094 0.150 0.207 12.65 15.44 0.38 2.39 3.81 014 0.498 0.608 0.015 0.094 0.150 0.207 12.65 15.44 0.38 2.39 3.81 015 0.560 0.670 1<	007	0.154	0.204	0.004	0.005	0.105	0.104	0.220	5.51	0.71	0.10	0.15	2.02		5.55
009 0.217 0.327 0.327 5.51 8.31 0 0 0 010 0.248 0.359 0.004 0.373 0.484 0 0.004 9.12 7.87 10.69 0.10 9.47 12.29 0.000 +0.002 -0.000 +0.002 -0.000 +0.002 -0.000 11.05 13.84 0.388 2.39 3.81 013 0.435 0.545 0.015 0.094 0.150 0.207 12.65 15.44 0.38 2.39 3.81 014 0.498 0.608 0.015 0.094 0.150 0.207 12.65 15.44 0.38 2.39 3.81 015 0.560 0.670 1 <td>008</td> <td>0.185</td> <td>0.294</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4.70</td> <td>7.47</td> <td></td> <td></td> <td></td> <td></td> <td></td>	008	0.185	0.294						4.70	7.47					
011 012 0.310 0.373 0.421 0.484 0.004 7.87 10.69 9.47 0.10 011 012 0.373 0.484 0.002 0.000 +0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.000 +0.005 -0.13 2.51 4.06 -1 1 1 1 1 1 1 1 1 -1	009	0.217							5.51	8.31					
012 0.373 0.484 9.47 12.29 +0.000 +0.002 -0.000 +0.005 +0.00 +0.005 -0.05 -0.00 +0.005 -0.05 -0.00 +0.005 -0.05 -0.00 +0.055 -0.05 -0.00 +0.055 -0.05 -0.00 11.05 13.84 0.38 2.39 3.81 014 0.498 0.608 0.015 0.094 0.150 0.207 12.65 15.44 0.38 2.39 3.81 016 0.623 0.733 0.005 0.099 0.160 0.217 15.82 18.62 0.13 2.51 4.06 017 0.685 0.795 0.005 0.099 0.160 0.217 15.82 18.62 0.13 2.51 4.06 018 0.748 0.858 0.905 0.095 0.099 20.57 23.37 0.13 0.13 2.51 4.06 020 0.873 0.983 0.005 0.99 21.79 22.17 24.97 0.13 0.13 0.13 0.13 0.13 0.13	010	0.248	0.359						6.30	9.12					
+0.000 +0.002 -0.002 -0.000 013 0.435 0.545 014 0.498 0.608 015 0.560 0.670 016 0.623 0.733 017 0.685 0.795 018 0.748 0.858 019 0.810 0.920 020 0.873 0.983				0.004							0.10				
-0.002 -0.000 013 0.435 0.545 014 0.498 0.608 015 0.560 0.670 016 0.623 0.733 017 0.685 0.795 018 0.748 0.858 019 0.810 0.920 020 0.873 0.983	012														
013 0.435 0.545 014 0.498 0.608 015 0.560 0.670 016 0.623 0.733 017 0.685 0.795 018 0.748 0.858 019 0.810 0.920 020 0.873 0.983															
014 0.498 0.608 0.015 0.094 0.150 0.207 12.65 15.44 0.38 2.39 3.81 015 0.560 0.670 0.670 1 1 1 14.22 17.02 1 0.38 2.39 3.81 1 1 1 1 1 1 1 1 1 1 1 1 0.13 2.51 4.06 0.13 2.51 4.06 0.15 0.05 0.099 0.160 0.217 15.82 18.62 17.40 20.19 0.13 2.51 4.06 0.13 2.51 4.06 0.13 2.51 4.06 0.13 2.51 4	013														
015 0.560 0.670 I I I I I 1.0.05 I I.0.09 I I.0.217 I5.82 I8.62 I8.62 I I.0.13					0.015	0.004	0.150	0 207				0.20	2 20	2 01	5.26
016 017 0.623 0.685 0.733 0.795 0.005 0.099 0.160 0.217 15.82 17.40 18.62 20.19 0.13 2.51 4.06 018 0.748 0.858 0.920 0.810 0.920 19.00 21.79 20.57 23.37 0.13 2.51 4.06 020 0.873 0.983 0.005 0.160 0.217 15.82 18.62 19.00 21.79 19.00 21.79 19.00 21.79 19.00 20.57 23.37 19.00 19.00 21.79 19.00 19.00 21.79 19.00 19.00 19.00 19.00 21.79 19.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.094</td> <td>0.150</td> <td>0.207</td> <td></td> <td></td> <td></td> <td>0.50</td> <td>2.59</td> <td>5.01</td> <td>5.20</td>						0.094	0.150	0.207				0.50	2.59	5.01	5.20
017 0.685 0.795 17.40 20.19 17.40 20.19 018 0.748 0.858 19.00 21.79 20.57 23.37 019 0.810 0.920 0.005 22.17 24.97 0.13					0 005	0 099	0 160	0 2 1 7				0 13	2 51	4 06	5.51
018 0.748 0.858 019 0.810 0.920 020 0.873 0.983 0.005 0.005					0.005	0.055	0.100	0.217				0.15	2.51		5.51
019 0.810 0.920 020 0.873 0.983 0.005	•														
020 0.873 0.983 0.005 22.17 24.97 0.13	018	0.748	0.858						19.00	21.79					
021 0.935 1.045 23.75 26.54				0.005							0.13				
022 0.998 1.108 25.35 28.14	022	0.998	1.108						25.35	28.14					
023 1.060 1.170 26.92 29.72	022	1.060	1 1 70						26.02	20.72					
023 1.060 1.170 26.92 29.72 28.52 31.32															
025 1.185 1.295 30.10 32.89															
026 1.248 1.358 31.70 34.49															
027 1.310 1.420 33.27 36.07															
028 1.373 1.483 34.87 37.67															

Recommended for static applications only.

Metric Sizes

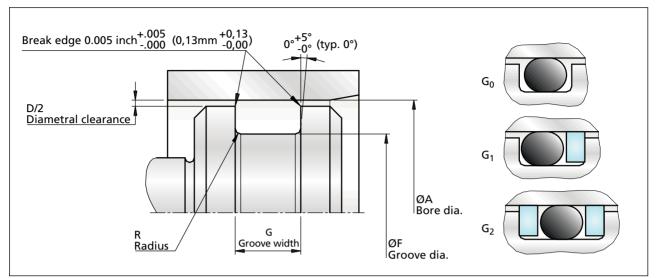
						Rod Si	zes per	AS4716						
			Inc	h						mm				
Dash No	ø B Rod Diameter	ø E Groove Diameter	D Diameter Clearance	R Radius		ove Wi .010/-0.0		ø B Rod Diameter	ø E Groove Diameter	D Diameter Clearance	R Radius		ove W .25/-0.	
			Maximum		G ₀	G ₁	G ₂			Maximum		G ₀	G ₁	G2
104 105 106	+0.000 -0.001 0.123 0.154 0.185	+0.001 -0.000 0.295 0.327 0.359	0.004					+0.000 -0.025 3.12 3.91 4.70	+0.025 -0.000 7.49 8.31 9.12	0.10				
107 108 109	0.217 0.248 0.310 +0.000	0.392 0.423 0.486 +0.002						5.51 6.30 7.87 +0.00	9.96 10.74 12.34					
	-0.002	-0.000						-0.05	+0.05 0.00					
110 111 112 113 114	0.373 0.435 0.498 0.560 0.623	0.546 0.609 0.672 0.734 0.797						9.47 11.05 12.65 14.22 15.82	13.87 15.47 17.07 18.64 20.24					
115 116	0.685 0.748	0.859 0.923						17.40 19.00	21.82 23.44					
117 118 119 120 121	0.810 0.873 0.935 0.998 1.060	0.985 1.048 1.110 1.173 1.235	0.005					20.57 22.17 23.75 25.35 26.92	25.02 26.62 28.19 29.79 31.37	0.13				
122 123 124 125 126	1.123 1.185 1.248 1.310 1.373	1.298 1.360 1.423 1.485 1.548						28.52 30.10 31.70 33.27 34.87	32.97 34.54 36.14 37.72 39.32					
127 128 129	1.435 1.498 1.560	1.610 1.673 1.735	0.006	0.015 I 0.005	0.141	0.183	0.245	36.45 38.05 39.62	40.89 42.49 44.07	0.15	0.38 I 0.13	3.58	4.65	6.22
130 131 132	1.623 1.685 1.748	1.798 1.860 1.923						41.22 42.80 44.40	45.67 47.24 48.84					
133 134	1.810 1.873	1.984 2.047						45.97 47.57	50.39 51.99					
135 136 137 138 139	1.936 1.998 2.061 2.123 2.186	2.110 2.172 2.235 2.297 2.360	0.007					49.17 50.75 52.35 53.92 55.52	53.59 55.17 56.77 58.34 59.94	0.18				
140 141 142 143 144	2.248 2.311 2.373 2.436 2.498	2.422 2.485 2.547 2.610 2.672						57.10 58.70 60.27 61.87 63.45	61.52 63.12 64.69 66.29 67.87					
145 146 147 148 149	2.561 2.623 2.686 2.748 2.811	2.735 2.797 2.860 2.922 2.985						65.05 66.62 68.22 69.80 71.40	69.47 71.04 72.64 74.22 75.82					

Hardware Expertise

Recommended for static applications only.

						Rod Si	zes per	AS4716						
			Inc	h			•			mm				
Dash No	ø B Rod Diameter	ø E Groove Diameter	D Diameter Clearance	R Radius		ove Wi 010/-0.0		ø B Rod Diameter	ø E Groove Diameter	D Diameter Clearance	R Radius		ove W .25/-0	
	Diameter	Diameter	Maximum		G ₀	G ₁	G ₂	Diameter	Diameter	Maximum		G ₀	G ₁	G 2
210 211 212 213	+0.000 -0.002 0.748 0.810 0.873 0.935	+0.002 -0.000 0.989 1.051 1.115 1.177						+0.00 -0.05 19.00 20.57 22.17 23.75	+0.05 -0.00 25.12 26.70 28.32 29.90		-			
214 215 216 217 218 219 220 221 222	0.998 1.060 1.123 1.185 1.248 1.310 1.373 1.435 1.498	1.240 1.302 1.365 1.427 1.490 1.552 1.615 1.677 1.740	0.005					25.35 26.92 28.52 30.10 31.70 33.27 34.87 36.45 38.05	31.50 33.07 34.67 36.25 37.85 39.42 41.02 42.60 44.20	0.13				
223 224	1.623 1.748	1.865 1.990	0.006					41.22 44.40	47.37 50.55	0.15				
225 226 227 228 229	1.873 1.998 2.123 2.248 2.373	2.115 2.240 2.365 2.490 2.615						47.57 50.75 53.92 57.10 60.27	53.72 56.90 60.07 63.25 66.42					
230 231 232 233 234	2.498 2.623 2.748 2.873 2.997	2.740 2.865 2.990 3.115 3.239		0.025				63.45 66.62 69.80 72.97 76.12	69.60 72.77 75.95 79.12 82.27		0.64			
235 236 237 238 239	3.122 3.247 3.372 3.497 3.622	3.364 3.489 3.614 3.739 3.864	0.007	0.023 I 0.010	0.188	0.235	0.304	79.30 82.47 85.65 88.82 92.00	85.45 88.62 91.80 94.97 98.15	0.18	0.04 I 0.25	4.78	5.97	7.72
240 241 242 243 244	3.747 3.872 3.997 4.122 4.247	3.989 4.114 4.239 4.364 4.489						95.17 98.35 101.52 104.70 107.87	101.32 104.50 107.67 110.85 114.02					
245	4.372	4.614						111.05	117.20		-			
246 247	4.497 4.622	4.739 4.864	0.008					114.22 117.40	120.37 123.55	0.20				
325 326 327	1.498 1.623 1.748	1.870 1.995 2.120	0.006					38.05 41.22 44.40	47.50 50.67 53.85	0.15				
328 329 330 331 332	1.873 1.998 2.123 2.248 2.373	2.245 2.370 2.495 2.620 2.745	0.007	0.035	0.281	0.334	0.424	47.57 50.75 53.92 57.10 60.27	57.02 60.20 63.37 66.55 69.72	0.18	0.89	7.14	8,48	10.77
333 334 335 336 337	2.498 2.623 2.748 2.873 2.997	2.870 2.995 3.120 3.245 3.369		0.020	0.201	0.004	0. iL-f	63.45 66.62 69.80 72.97 76.12	72.90 76.07 79.25 82.42 85.57	0.10	0.51		0.10	

Metric Sizes


						Rod Si	zes per	AS4716						
			Inc	h						mm				
Dash	øB	øE	D	R		ove Wi		øB	øE	D	R		ove W	
No	Rod	Groove	Diameter	Radius	+0	.010/-0.0	000	Rod	Groove	Diameter	Radius	+0	.25/-0.	.00
	Diameter	Diameter	Clearance Maximum		Go	G ₁	G ₂	Diameter	Diameter	Clearance Maximum		G	G ₁	
	.0.000	+0.002	Widximum		G0	G ₁	G ₂	+0.00	+0.05	Waximum		G ₀	U ₁	G ₂
	+0.000 -0.002	-0.002						+0.00	+0.05					
338	3.122	3.494						79.30	88.75					
339 340	3.247 3.372	3.619 3.744		0.035				82.47 85.65	91.92 95.10		0.89			
340	3.497	3.869	0.007	0.055	0.281	0.334	0.424	88.82	98.27	0.18	0.69	7.14	8.48	10.77
342	3.622	3.994		0.020				92.00	101.45		0.51			
343	3.747	4.119						95.17	104.62					
344	3.872	4.115						98.35	104.02					
345	3.997	4.369						101.52	110.97					
346 347	4.122 4.247	4.494 4.619						104.70 107.87	114.15 117.32					
348	4.372	4.744						111.05	120.50					
349	4.497	4.869						114.22	123.67					
	+0.000 -0.003	+0.003 -0.000						+0.000 -0.076	+0.076 -0.000					
425	4.497	4.974						114.22	126.34					
426	4.622	5.099 5.224						117.40	129.51					
427 428	4.747 4.872	5.224						120.57 123.75	132.69 135.86					
429	4.997	5.474						126.92	139.04					
430	5.122	5.599						130.10	142.21					
430	5.122	5.724						133.27	142.21					
432	5.372	5.849	0.009					136.45	148.56	0.23				
433 434	5.497	5.974						139.62 142.80	151.74					
454	5.622	6.099						142.00	154.91					
435	5.747	6.224						145.97	158.09					
436 437	5.872 5.997	6.349 6.474						149.15 152.32	161.26 164.44					
437	6.247	6.724						158.67	170.79					
43.0		6.074]			
439 440	6.497 6.747	6.974 7.224						165.02 171.37	177.14 183.49					
441	6.997	7.474		0.035				177.72	189.84		0.89			
442	7.247	7.724	0.010		0.375	0.475	0.579	184.07	196.19	0.25		9.53	12.07	14.71
443 444	7.497 7.747	7.974 8.224		0.020				190.42 196.77	202.54 208.89		0.51			
445	7.997	8.474						203.12	215.24					
446	8.497	8.974						215.82	227.94		-			
	+0.000 -0.003	+0.004 -0.000						+0.000 -0.076	+0.102 -0.000					
447	8.997	9.474						228.52	240.64					
448	9.497	9.974						241.22	253.34					
449 450	9.997 10.497	10.474 10.974						253.92 266.62	266.04 278.74					
451	10.997	11.474						279.32	291.44					
452	11.497	11.974						292.02	304.14					
452	11.997	12.474	0.010					304.72	316.84	0.25				
454	12.497	12.974						317.42	329.54					
455 456	12.997 13.497	13.474 13.974						330.12 342.82	342.24 354.94					
	13.497	13.9/4						542.02	554.94					
457	13.997	14.474						355.52	367.64					
458 459	14.497 14.997	14.974 15.474						368.22 380.92	380.34 393.04					
459	15.497	15.474						393.62	405.74					
			applications o						etric Sizes					

Metric Sizes

The above dimensions are for reference only.

600 Series (3/8") cross section AS4832 recommended for diameters above -442. Dash Numbers are size codes.

■ Hardware Dimensions per AS5857 BORE

Figure 8 Installation Drawing for BORE

Table X Groove Dimensions, BORE per AS5857

						Bore Si	zes pe	r AS5857						
			Inc	h						mm				
Dash	ø A	øF	D	R	Gro	ove Wi	dth	øA	øF	D	R	Groo	ove W	idth
No	Bore	Groove	Diameter	Radius	+0.	.010/-0.0	000	Bore	Groove		Radius	+0	.25/-0.	00
	Diameter	Diameter	Clearance					Diameter	Diameter					
			Maximum		G ₀	G ₁	G ₂			Maximum		G ₀	G ₁	G ₂
	+0.001	+0.000			+0.005				+0.000			+0.13		
	-0.000	-0.001			-0.000		-0.000		-0.025				-0.00	-0.00
001	0.086	0.035	0.004	0.015	0.090	-	-	2.18	0.89	0.40	0.38	2.29	-	-
002	0.118 0.151	0.048 0.063	0.004	0.005	0.095	-	-	3.00 3.84	1.22 1.60	0.10	0.13	2.41 2.67	-	-
003	0.185	0.003		0.005	0.105		_	4.70	1.98		0.15	2.07	-	
005	0.217	0.110			0.115	0.174	0.230	5.51	2.79			2.92	4.42	5.84
006	0.230	0.123					1	5.84	3.12			I	I	1
007	0.261	0.154	0.004		0.120	0.184	0.240	6.63	3.91	0.10		3.05	4.67	6.09
008 009 010 011 012	0.293 0.326 0.357 0.420 0.485	0.186 0.219 0.250 0.313 0.378						7.44 8.28 9.07 10.67 12.32	4.72 5.56 6.35 7.95 9.60					
012	+0.002	+0.000						+0.05	+0.00		-			
013 014 015 016 017	-0.000 0.550 0.613 0.675 0.738 0.800	-0.002 0.443 0.506 0.568 0.631 0.693		0.015 I 0.005	0.105 I 0.110	0.164 I 0.174	0.220 I 0.230	-0.00 13.97 15.57 17.15 18.75 20.32	-0.05 11.25 12.85 14.43 16.03 17.60		0.38 I 0.13	2.67 I 2.79	4.17 I 4.42	5.59 I 5.84
018 019 020 021 022	0.863 0.925 0.991 1.053 1.116	0.756 0.818 0.884 0.946 1.009	0.005					21.92 23.50 25.17 26.75 28.35	19.20 20.78 22.45 24.03 25.63	0.13				
023 024 025 026 027 028	1.178 1.241 1.303 1.366 1.428 1.491	1.071 1.134 1.196 1.259 1.321 1.384						29.92 31.52 33.10 34.70 36.27 37.87	27.20 28.80 30.38 31.98 33.55 35.15					

						Bore Si	zes pei	r AS5857						
			Inc							mm				
Dash No	ø A Bore	ø F Groove	D Diameter	R Radius		ove Wi 010/-0.0		ø A Bore	ø F Groove	D Diameter	R Radius		ove W .25/-0.	
	Diameter	Diameter	Clearance Maximum		G ₀	G ₁	G ₂	Diameter	Diameter	Clearance Maximum		G ₀	G ₁	G ₂
	+0.001 -0.000	+0.000 -0.001			00	01	<u> </u>	+0.025 -0.000	+0.000 -0.025			00	01	<u> </u>
104 105 106 107 108 109	0.286 0.317 0.349 0.382 0.414 0.477	0.121 0.152 0.184 0.217 0.249 0.312	0.004		0.150	0.210	0.275	7.26 8.05 8.86 9.70 10.52 12.12	3.07 3.86 4.67 5.51 6.32 7.92	0.10		3.81	5.33	6.99
110 111 112 113 114	+0.002 -0.000 0.541 0.604 0.668 0.734 0.800	+0.000 -0.002 0.377 0.440 0.504 0.570 0.636						+0.05 -0.00 13.74 15.34 16.97 18.64 20.32	+0.00 -0.05 9.58 11.18 12.80 14.48 16.15					
115 116 117 118 119	0.863 0.925 0.991 1.053 1.116	0.699 0.761 0.827 0.889 0.952	0.005					21.92 23.50 25.17 26.75 28.35	17.75 19.33 21.01 22.58 24.18	0.13				
120 121 122 123 124	1.178 1.241 1.303 1.366 1.428	1.014 1.077 1.139 1.202 1.264						29.92 31.52 33.10 34.70 36.27	25.76 27.36 28.93 30.53 32.11					
125 126 127 128 129	1.491 1.553 1.616 1.678 1.741	1.327 1.389 1.452 1.514 1.577		0.015 I 0.005				37.87 39.45 41.05 42.62 44.22	33.71 35.28 36.88 38.46 40.06		0.38 I 0.13			
130 131 132 133 134	1.805 1.867 1.930 1.992 2.055	1.641 1.703 1.766 1.828 1.891	0.006		0.140	0.200	0.265	45.85 47.42 49.02 50.60 52.20	41.68 43.26 44.86 46.43 48.03	0.15		3.56	5.08	6.73
135 136 137 138 139	2.118 2.180 2.243 2.305 2.368	1.954 2.016 2.079 2.141 2.204	0.000		0.140	0.200	0.205	53.80 55.37 56.97 58.55 60.15	49.63 51.21 52.81 54.38 55.98	0.15		5.50	5.00	0.75
140 141 142 143 144	2.430 2.493 2.555 2.618 2.680	2.266 2.329 2.391 2.454 2.516	0.007	0.007				61.72 63.32 64.90 66.50 68.07	57.56 59.16 60.73 62.33 63.91	0.18				
145 146 147 148 149	2.743 2.805 2.868 2.930 2.993	2.579 2.641 2.704 2.766 2.829	0.007					69.67 71.25 72.85 74.42 76.02	65.51 67.08 68.68 70.26 71.86					

						Bore Si	zes pe	r AS5857						
			Inc	h						mm				
Dash	øA	øF	D	R		ove Wi		ØA	øF	D	R		ove W	
No	Bore Diameter	Groove Diameter	Diameter Clearance	Radius	+0.	010/-0.0	000	Bore Diameter	Groove Diameter	Diameter Clearance	Radius	+0	.25/-0.	.00
	2.00.000	2.0	Maximum		G ₀	G ₁	G ₂			Maximum		G ₀	G1	G ₂
	+0.002	+0.000						+0.05	+0.00					
210	-0.000 0.991	-0.002 0.767						-0.00 25.17	-0.05 19.48					
210	1.053	0.829						26.75	21.06					
212	1.116	0.892						28.35	22.66					
213 214	1.178 1.241	0.954 1.017						29.92 31.52	24.23 25.83					
215	1.303	1.079		0.025				33.10	27.41		0.64			
215	1.365	1.142	0.006		0.185	0.250	0.320	34.70	29.01	0.15	0.04	4.70	6.35	8.13
217	1.428	1.204		0.010				36.27	30.58		0.25			
218	1.491	1.267 1.329						37.87	32.18					
219 220	1.553 1.616	1.329						39.45 41.05	33.76 35.36					
221	1.678	1.454						42.62	36.93					
222	1.741	1.517						44.22	38.53 41.73					
223 224	1.867 1.992	1.643 1.768						47.42 50.60	41.73					
225	2.118	1.894	0.006					53.80	48.11	0.15				
226	2.243	2.019						56.97	51.28					
227 228	2.368 2.493	2.144 2.269						60.15 63.32	54.46 57.63					
229	2.618	2.394						66.50	60.81					
230	2.743	2.519						69.67	63.98					
231 232	2.868 2.993	2.644 2.769						72.85 76.02	67.16 70.33					
233	3.118	2.894						79.20	73.51					
234	3.243	3.019						82.37	76.68					
235	3.368	3.144	0.007					85.55	79.86	0.18				
236 237	3.493 3.618	3.269 3.394						88.72 91.90	83.03 86.21					
238	3.743	3.519						95.07	89.38					
239	3.868	3.644						98.25	92.56					
240	3.993	3.769						101.42	95.73					
241 242	4.118 4.243	3.894 4.019						104.60 107.77	98.91 102.08					
243	4.368	4.144						110.95	105.26					
244	4.493	4.269						114.12	108.43					
245	4.618	4.394	0.008					117.30	111.61	0.20				
246 247	4.743 4.868	4.519 4.644						120.47 123.65	114.78 117.96					
325	1.867	1.523						47.42	38.68					
326 327	1.992 2.118	1.648 1.774	0.006					50.60 53.80	41.86 45.06	0.15				
328	2.118	1.899	0.000					56.97	48.23	0.15				
329	2.368	2.024						60.15	51.41					
330	2.493	2.149						63.32	54.58					
331 332	2.618 2.743	2.274 2.399						66.50 69.67	57.76 60.93					
333	2.868	2.539						72.85	64.11					
334	2.993	2.649	0.007	0.035	0 270	0.200	0 455	76.02	67.28	0.19	0.89	6.96	0.14	11 50
335	3.118	2.774	0.007	0.020	0.270	0.360	0.455	79.20	70.46	0.18	ı 0.51	6.86	9.14	11.56
336	3.243	2.899						82.37	73.63					
337 338	3.368 3.493	3.024 3.149						85.55 88.72	76.81 79.98					
339	3.618	3.274						91.90	83.16					

						Bore Si	zes pe	r AS5857						
			Inc	h			-			mm				
Dash No	ø A Bore	ø F Groove	D Diameter	R Radius		ove Wi .010/-0.0		ø A Bore	ø F Groove		R Radius		ove W 0.25/-0.	
	Diameter	Diameter	Clearance Maximum		Go	G ₁	G₂	Diameter	Diameter	Clearance Maximum		G₀	G ₁	G ₂
340 341 342 343 344	+0.002 -0.000 3.743 3.868 3.993 4.118 4.243	+0.000 -0.002 3.399 3.524 3.649 3.774 3.899	0.007	0.035	0.270	0.360	0.455	+0.05 -0.00 95.07 98.25 101.42 104.60 107.77	+0.00 -0.05 86.33 89.51 92.68 95.86 99.03	0.18	0.89	6.86		11.56
345 346 347 348 349	4.368 4.493 4.618 4.743 4.868	4.024 4.149 4.274 4.399 4.524	0.008	0.020				110.95 114.12 117.30 120.47 123.65	102.21 105.38 108.56 111.73 114.91	0.20	0.51			
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444	+0.003 -0.000 4.974 5.099 5.224 5.349 5.474 5.599 5.724 5.849 5.974 6.099 6.224 6.349 6.474 6.724 6.974 7.224 7.474 7.724 7.974 8.224	+0.000 -0.003 4.519 4.644 4.769 4.894 5.019 5.144 5.269 5.394 5.519 5.644 5.769 5.894 6.519 6.269 6.519 6.269 6.519 6.269 6.519 7.269 7.269 7.519 7.769	0.009	0.035 I 0.020	0.345	0.475	0.610	+0.076 -0.000 126.34 129.51 132.69 135.86 139.04 142.21 145.39 148.56 151.74 154.91 158.09 161.26 164.44 170.79 177.14 183.49 189.84 196.19 202.54 208.89	+0.000 -0.076 114.78 117.96 121.13 124.31 127.48 130.66 133.83 137.01 140.18 143.36 146.53 149.71 152.88 159.23 165.58 171.93 178.28 184.63 190.98 197.33	0.23	0.89 I 0.51	8.76	12.07	15.49
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460	8.474 8.974 +0.004 -0.000 9.474 9.974 10.474 10.974 11.974 12.474 12.974 13.974 13.974 14.474 14.974 15.974	8.019 8.519 +0.000 -0.003 9.020 9.520 10.020 10.520 11.020 11.520 12.020 12.520 13.520 14.020 14.020 15.520	0.010					215.24 227.94 +0.100 -0.000 240.64 253.34 266.04 278.74 291.44 304.14 316.84 329.54 342.24 354.94 367.64 380.34 393.04	203.68 216.38 +0.000 -0.076 229.11 241.81 254.51 267.21 279.91 292.61 305.31 318.01 330.71 343.41 356.11 368.81 381.51 394.21	0.25				

The above dimensions are for reference only.

600 Series (3/8") cross section AS4832 recommended for diameters above -442. Dash numbers are size codes

■ Hardware Dimensions per AS5857 ROD

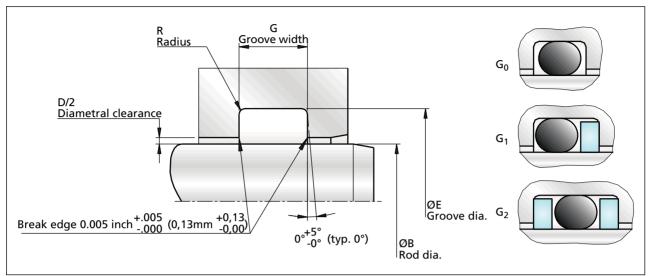


Figure 9 Installation Drawing for ROD

Table XI Groove Dimensions, ROD per AS5857

						Rod Si	zes per	AS5857						
			Inc	h						mm				
Dash No	ø B Rod Diameter	ø E Groove Diameter	D Diameter Clearance	R Radius		ove Wi 010/-0.0		ø B Rod Diameter	ø E Groove Diameter		R Radius		ove W .25/-0.	
			Maximum		G ₀	G ₁	G ₂			Maximum		G ₀	G ₁	G ₂
	+0.000 -0.001	+0.001 -0.000			+0.005			+0.000 -0.025	+0.025 -0.000			+0.13 -0.00	-	-
001 002 003	0.033 0.048 0.063	0.086 0.118 0.151	0.004	0.015 I 0.005	0.090 0.095 0.105			0.84 1.22 1.60	2.18 3.00 3.84	0.10	0.38 I 0.13	2.29 2.41 2.67	-	
004 005 006 007	0.076 0.108 0.123 0.154	0.184 0.216 0.231 0.262			0.115 I 0.120	0.174 I 0.184	0.230 I 0.240	1.93 2.74 3.12 3.91	4.67 5.49 5.87 6.65			2.92 I 3.05	4.42 I 4.67	5.84 I 6.09
008 009 010 011 012	0.185 0.217 0.248 0.310 0.373	0.293 0.325 0.356 0.418 0.481	0.004					4.70 5.51 6.30 7.87 9.47	7.44 8.26 9.04 10.62 12.22	0.10				
013 014 015 016 017	+0.000 -0.002 0.435 0.498 0.560 0.623 0.685	+0.002 -0.000 0.543 0.606 0.668 0.731 0.793		0.015 I 0.005	0.105 I 0.110	0.164 I 0.174	0.220 I 0.230	+0.00 -0.05 11.05 12.65 14.22 15.82 17.40	+0.05 -0.00 13.79 15.39 16.97 18.57 20.14		0.38 I 0.13	2.67 I 2.79	4.17 I 4.42	5.59 I 5.84
018 019 020 021 022	0.748 0.810 0.873 0.935 0.998	0.856 0.918 0.981 1.043 1.106	0.005					19.00 20.57 22.17 23.75 25.35	21.74 23.32 24.92 26.49 28.09	0.13				
023 024 025 026 027 028	1.060 1.123 1.185 1.248 1.310 1.373	1.168 1.231 1.293 1.356 1.418 1.481						26.92 28.52 30.10 31.70 33.27 34.87	29.67 31.27 32.84 34.44 36.02 37.62					

Metric Sizes

Ø B Rod ameter 0.000 0.001 0.123 0.154 0.154 0.217 0.248 0.310 0.000 0.000 0.002 0.435 0.435 0.435 0.435 0.438 0.439 0.438 0.438 0.439 0.438 0.4390 0.4390 0.4390 0.4390 0.4390 0.4390 0.4390 0.4390 0.4390 0.4390 0.4390 0.4390 0.4390 0.4390 0.4390 0.4390 0.4390 0.4390 0.4490 0.4490 0.4490 0.4490 0.4490 0.4490 0.4490 0.4490 0.4490 0.4490000000000	øE Groove Diameter +0.001 -0.000 0.288 0.319 0.350 0.350 0.382 0.413 0.475 +0.002 -0.000 0.538 0.600 0.663 0.725 0.788 0.850 0.913 0.975 1.038 1.100 1.163 1.225	Inc D Diameter Clearance Maximum 0.004	h Radius		ove Wi 010/-0.0 G ₁ 0.210		+0.000 -0.025 3.12 3.91 4.70 5.51 6.30 7.87 +0.00 -0.05 9.47 11.05 12.65 14.22	øE Groove Diameter +0.025 -0.000 7.32 8.10 8.89 9.70 10.49 12.07 +0.05 -0.00 13.67 15.24 16.84	mm Diameter Clearance Maximum 0.10	R Radius		5.33	
Rod ameter 0.000 0.001 0.123 0.154 0.217 0.248 0.310 0.000 0.002 0.373 0.435 0.435 0.435 0.435 0.685 0.748 0.810 0.873 0.935 0.998	Groove Diameter +0.001 -0.000 0.288 0.319 0.350 0.382 0.413 0.475 +0.002 -0.002 -0.002 0.538 0.600 0.663 0.725 0.788 0.850 0.913 0.975 1.038 1.100 1.163	Diameter Clearance Maximum 0.004		+0. G ₀	010/-0.0	000 G ₂	Rod Diameter +0.000 -0.025 3.12 3.91 4.70 5.51 6.30 7.87 +0.00 -0.05 9.47 11.05 12.65 14.22	Groove Diameter +0.025 -0.000 7.32 8.10 8.89 9.70 10.49 12.07 +0.05 -0.00 13.67 15.24	Diameter Clearance Maximum		+0 G ₀	.25/-0. G ₁	00 G ₂
0.001 0.123 0.154 0.185 0.217 0.248 0.310 0.000 0.002 0.373 0.435 0.435 0.435 0.498 0.623 0.685 0.748 0.810 0.873 0.935 0.998	-0.000 0.288 0.319 0.350 0.413 0.475 +0.002 -0.000 0.538 0.600 0.663 0.725 0.788 0.850 0.913 0.975 1.038 1.100 1.163	0.004	-				-0.025 3.12 3.91 4.70 5.51 6.30 7.87 +0.00 -0.05 9.47 11.05 12.65 14.22	-0.000 7.32 8.10 8.89 9.70 10.49 12.07 +0.05 -0.00 13.67 15.24					
0.001 0.123 0.154 0.185 0.217 0.248 0.310 0.000 0.002 0.373 0.435 0.435 0.435 0.498 0.623 0.685 0.748 0.810 0.873 0.935 0.998	-0.000 0.288 0.319 0.350 0.413 0.475 +0.002 -0.000 0.538 0.600 0.663 0.725 0.788 0.850 0.913 0.975 1.038 1.100 1.163			0.150	0.210	0.275	-0.025 3.12 3.91 4.70 5.51 6.30 7.87 +0.00 -0.05 9.47 11.05 12.65 14.22	-0.000 7.32 8.10 8.89 9.70 10.49 12.07 +0.05 -0.00 13.67 15.24	0.10		3.81	5.33	6.99
0.248 0.310 0.000 0.002 0.373 0.435 0.498 0.623 0.685 0.748 0.810 0.873 0.935 0.998	0.413 0.475 +0.002 -0.000 0.538 0.600 0.663 0.725 0.788 0.850 0.913 0.975 1.038 1.100 1.163	0.005					6.30 7.87 +0.00 -0.05 9.47 11.05 12.65 14.22	10.49 12.07 +0.05 -0.00 13.67 15.24					
0.002 0.373 0.435 0.498 0.560 0.623 0.685 0.748 0.810 0.873 0.935 0.998	-0.000 0.538 0.600 0.663 0.725 0.788 0.850 0.913 0.975 1.038 1.100 1.163	0.005					-0.05 9.47 11.05 12.65 14.22	-0.00 13.67 15.24					·
).748).810).873).935).998	0.913 0.975 1.038 1.100 1.163	0.005					15.82	18.42 20.02					
.123	1.288	0.005					17.40 19.00 20.57 22.17 23.75 25.35 26.92 28.52	21.59 23.19 24.77 26.37 27.94 29.54 31.12 32.72	0.13				
.185 .248 .310 .373	1.350 1.413 1.475 1.538 1.600		0.015				30.10 31.70 33.27 34.87 36.45	34.29 35.89 37.47 39.07 40.64		0.38			
.435 .498 .560 .623 .685	1.663 1.725 1.788 1.850	0.006	0.015 I 0.005	0.140	0.200	0.265	38.05 39.62 41.22 42.80	40.64 42.24 43.82 45.42 46.99	0.15	0.38 I 0.13	3.56	5.08	6.73
.748 .810 .873	1.913 1.975 2.038						44.40 45.97 47.57	48.59 50.17 51.77					
.936 .998 2.061 2.123 2.186	2.101 2.163 2.226 2.288 2.351						49.17 50.75 52.35 53.92 55.52	53.37 54.94 56.54 58.12 59.72					
2.248 2.311 2.373 2.436 2.498	2.413 2.476 2.538 2.601 2.663	0.007					57.10 58.70 60.27 61.87 63.45	61.29 62.89 64.47 66.07 67.64	0.18				
2.561 2.623 2.686	2.726 2.788 2.851 2.913 2.976						65.05 66.62 68.22 69.80 71.40	69.24 70.82 72.42 73.99 75.59					
	310 373 936 998 961 123 186 248 311 373 136 198 561 523	310 1.975 373 2.038 936 2.101 998 2.163 961 2.226 123 2.288 866 2.351 248 2.413 311 2.476 373 2.538 136 2.601 198 2.663 561 2.726 223 2.788 866 2.851 248 2.913	310 1.975 373 2.038 936 2.101 998 2.163 961 2.226 123 2.288 186 2.351 248 2.413 0.007 311 2.476 373 2.538 136 2.601 198 2.663 561 2.726 523 2.788 386 2.851 248 2.913	310 1.975 373 2.038 936 2.101 998 2.163 961 2.226 123 2.288 186 2.351 248 2.413 0.007 311 2.476 373 2.538 136 2.601 198 2.663 561 2.726 523 2.788 866 2.851 248 2.913	310 1.975 373 2.038 936 2.101 998 2.163 961 2.226 123 2.288 186 2.351 248 2.413 0.007 11 2.476 132 2.538 136 2.601 198 2.663 253 2.788 866 2.851 248 2.913	310 1.975 373 2.038 936 2.101 998 2.163 961 2.226 123 2.288 866 2.351 248 2.413 926 2.538 136 2.601 198 2.663 198 2.663 23 2.788 366 2.851 248 2.913	310 1.975 373 2.038 936 2.101 998 2.163 961 2.226 123 2.288 866 2.351 248 2.413 926 2.538 131 2.538 136 2.601 198 2.663 561 2.726 523 2.788 866 2.851 248 2.913	310 1.975 373 2.038 936 2.101 998 2.163 9061 2.226 923 2.288 926 2.351 928 2.351 929 2.351 929 2.663 921 2.788 926 2.788 927 2.538 928 2.663 929 2.663 920 2.788 921 2.788 926 2.851 928 2.913	310 1.975 50.17 373 2.038 45.97 50.17 373 2.038 49.17 53.37 396 2.163 50.75 54.94 3061 2.226 52.35 56.54 23 2.288 53.92 58.12 866 2.351 55.52 59.72 248 2.413 0.007 57.10 61.29 311 2.476 58.70 62.89 60.27 64.47 326 2.601 61.87 66.07 63.45 67.64 361 2.726 65.05 69.24 66.62 70.82 386 2.851 68.22 72.42 69.80 73.99	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Hardware Expertise

						Rod Si	zes per	AS5857						
		-	Inc	h			•		-	mm				
Dash No	ø B Rod Diameter	ø E Groove Diameter	D Diameter Clearance	R Radius		ove Wi 010/-0.0		ø B Rod Diameter	ø E Groove Diameter	D Diameter Clearance	R Radius		ove W .25/-0.	
		2.0	Maximum		G ₀	G ₁	G_2			Maximum		G ₀	G ₁	G ₂
210 211 212 213 214	+0.000 -0.002 0.748 0.810 0.873 0.935 0.998	+0.002 -0.000 0.974 1.036 1.099 1.161 1.224						+0.00 -0.05 19.00 20.57 22.17 23.75 25.35	+0.05 -0.00 24.74 26.31 27.91 29.49 31.09					
215 216 217 218 219 220 221 222	1.060 1.123 1.185 1.248 1.310 1.373 1.435 1.498	1.286 1.349 1.411 1.474 1.536 1.599 1.661 1.724	0.005	0.025 I 0.010	0.185	0.250	0.320	26.92 28.52 30.10 31.70 33.27 34.87 36.45 38.05	32.66 34.26 35.84 37.44 39.01 40.61 42.19 43.79	0.13	0.64 I 0.25	4.70	6.35	8.13
223 224	1.623 1.748	1.849 1.974	0.006					41.22 44.40	46.96 50.14	0.15				
225 226 227 228 229 230 231	1.873 1.998 2.123 2.248 2.373 2.498 2.623	2.099 2.224 2.349 2.474 2.599 2.724 2.849						47.57 50.75 53.92 57.10 60.27 63.45 66.62	53.31 56.49 59.66 62.84 66.01 69.19 72.36					
232 233 234 235 236 237	2.748 2.873 2.997 3.122 3.247 3.372	2.974 3.099 3.223 3.348 3.473 3.598	0.007					69.80 72.97 76.12 79.30 82.47 85.65	75.54 78.71 81.86 85.04 88.21 91.39	0.18				
238 239 240 241 242 243 244 245	3.497 3.622 3.747 3.872 3.997 4.122 4.247 4.372	3.723 3.848 3.973 4.098 4.223 4.348 4.473 4.598						88.82 92.00 95.17 98.35 101.52 104.70 107.87 111.05	94.56 97.74 100.91 104.09 107.26 110.44 113.61 116.79					
246	4.497	4.723	0.008					114.22	119.96	0.20				
247 325 326 327	4.622 1.498 1.623 1.748	4.848 1.846 1.971 2.096	0.006					117.40 38.05 41.22 44.40	123.14 46.89 50.06 53.24	0.15				
328 329 330 331 332 333 334 335	1.873 1.998 2.123 2.248 2.373 2.498 2.623 2.748	2.221 2.346 2.471 2.596 2.721 2.846 2.971 3.096	0.007	0.035 I 0.020	0.270	0.360	0.455	47.57 50.75 53.92 57.10 60.27 63.45 66.62 69.80	56.41 59.59 62.76 65.94 69.11 72.29 75.46 78.64	0.18	0.89 I 0.51	6.86	9.14	11.56
				0.020							0.51			

						Rod Si	zes per	AS5857						
	,	1	Inc							mm				
Dash No	ø B Rod	ø E Groove	D Diameter	R Radius		ove Wi .010/-0.0		ø B Rod	ø E Groove		R Radius		ove W 0.25/-0.	
	Diameter	Diameter	Clearance Maximum		Go	G ₁	G ₂	Diameter	Diameter	Clearance Maximum		G_0	G1	G 2
338 339 340 341 342	+0.000 -0.002 3.122 3.247 3.372 3.497 3.622	+0.002 -0.000 3.470 3.595 3.720 3.845 3.970	0.007	0.035 I 0.020	0.270	0.360	0.455	+0.00 -0.05 79.30 82.47 85.65 88.82 92.00	+0.05 -0.00 88.14 91.31 94.49 97.66 100.84	0.18	0.89 I 0.51	6.86	9.14	
343 344 345 346 347 348 349	3.747 3.872 3.997 4.122 4.247 4.372 4.497	4.095 4.220 4.345 4.470 4.595 4.720 4.845						95.17 98.35 101.52 104.70 107.87 111.05 114.22	104.01 107.19 110.36 113.54 116.71 119.89 123.06					
425 426 427 428 429	+0.000 -0.003 4.497 4.622 4.747 4.872 4.997	+0.003 -0.000 4.956 5.081 5.206 5.331 5.456						+0.000 -0.076 114.22 117.40 120.57 123.75 126.92	+0.076 -0.000 125.88 129.06 132.23 135.41 138.58					
430 431 432 433 434	5.122 5.247 5.372 5.497 5.622	5.581 5.706 5.831 5.956 6.081	0.009					130.10 133.27 136.45 139.62 142.80	141.76 144.93 148.11 151.28 154.46	0.23				
435 436 437 438	5.747 5.872 5.997 6.247	6.206 6.331 6.456 6.706						145.97 149.15 152.32 158.67	157.63 160.81 163.98 170.33					
439 440 441 442 443 444 445 446	6.497 6.747 6.997 7.247 7.497 7.747 7.997 8.497 +0.000	6.956 7.206 7.456 7.706 7.956 8.206 8.456 8.956 +0.004		0.035 I 0.020	0.345	0.475	0.610	165.02 171.37 177.72 184.07 190.42 196.77 203.12 215.82 +0.000	176.68 183.03 189.38 195.73 202.08 208.43 214.78 227.48 +0.100		0.89 I 0.51	8.76	12.07	15.4
447 448 449 450 451	-0.003 8.997 9.497 9.997 10.497 10.997	-0.000 9.456 9.956 10.456 10.956 11.456	0.010					-0.076 228.52 241.22 253.92 266.62 279.32	-0.000 240.18 252.88 265.58 278.28 290.98	0.25				
452 453 454 455 456	11.497 11.997 12.497 12.997 13.497	11.956 12.456 12.956 13.456 13.956						292.02 304.72 317.42 330.12 342.82	303.68 316.38 329.08 341.78 354.48					
457 458 459 460	13.997 14.497 14.997 15.497	14.456 14.956 15.456 15.956						355.52 368.22 380.92 393.62	367.18 379.88 392.58 405.28 etric Sizes					

The above dimensions are for reference only.

600 Series (3/8") cross section AS4832 recommended for diameters above -442. Dash numbers are size codes

Products designed for optimized performance

Trelleborg Sealing Solutions offers one of the widest product portfolios of any seal supplier including many proprietary designs. They range from multi-functional O-Rings to more complex Turcon[®] geometries, from custom molded designs to bonded products.

Sealing elements have a decisive influence on the function and service life of the aerospace systems into which they are fitted and in particular on cylinders, both hydraulic and pneumatic. It is important to select not only the correct sealing material to meet the performance parameters of an application but also the optimum seal configuration.

The most effective sealing solutions will offer:

- maximized leakage control
- low friction
- resistance to wear
- the ability to withstand the most aggressive chemicals
- broad operating temperatures into the extremes, both hot and cold
- extrusion resistance
- compact form
- ease of installation

For advice on the optimum solution for your application, contact your local Trelleborg Sealing Solutions marketing company.

Ordering seals

The multi-element seal assemblies presented in this catalog are supplied as complete sets. The assembly includes the seal and proprietary elastomer energizing element.

Older seal designs not included in this catalog continue to be available. Information on these parts and part number ordering details can be found in the "Aerospace Part Number Guide" chapter in the back of this catalog or in the stand-alone *Aerospace Part Number Guide*. For all new applications, we recommend you use the seal types and preferred sizes listed here.

Other combinations of Turcon[®] materials and special designs can be developed and supplied for individual applications. All intermediate sizes up to 10 ft/ 3000 mm diameter are available, provided there is a sufficient volume requirement. Sizes over 10 ft/ 3000 mm can be supplied in some seal designs.

The sizes contained in the catalog are considered standard sizes. For non-standard sizes that include proprietary elastomer designs, a share of the tool cost may be charged if there is only limited demand for that size of seal.

Industry Specific Products

							Appli	cation			
Seal	Features	Gland	-		Pressure Direction			Speed Limit	Temperature Range*	Pressure**	
Turcon® VL Seal®	High performance uni-directional rod seal - Low friction - Leak-tight	MIL-G-5514F AS4716	R	S	U	No	Yes	49.2 ft/s 15.0 m/s	-65 to +390°F -54 to +200°C	5,000 psi 35 MPa (10,000 psi 69 MPa with Zurcon [®]	
										Back-up Ring)	
Turcon [®] Plus Seal [®] II	High performance slipper seal - Low constant		R	s							
	friction - Resistance to wear	AS4716	т		в	Yes	Yes	49.2 ft/s	-65 to +390°F	5,000 psi 35 MPa (10,000 psi	
	 Optimized extrusion resistance Easy installation 		0					15.0 m/s	-54 to +200°C	69 MPa with Stakbak [®])	
	- Recommended for high frequencies		н								
Turcon [®] Double Delta [®] II	The original slipper seal design - No stick-slip		R	s						5,000 psi	
	 Cost-effective Can be made to suit any O-Ring size 	AS4716			В	Yes	Yes	49.2 ft/s 15.0 m/s	-65 to +390°F -54 to +200°C	35 MPa (10,000 psi 69 MPa with Stakbak [®])	
Turcon [®] Wedgpak [®]	Symmetrical seal with zero-leakage		R	s						5,000 psi 35 MPa	
	 Low-friction Excellent extrusion and wear resistance Preferred elastomer contact dynamic seal 	AS4716			В	Yes	Yes	9.8 ft/s 3.0 m/s	-65 to +390°F -54 to +200°C	(10,000 psi 69 MPa in Wedgpak [®] EP configuration)	
Turcon [®] T-Seal	Excellent static seal - Geometry prevents spiraling or rolling		R	s				3.3 ft/s	-65 to +390°F	5000 psi 35 MPa (10,000 psi	
	of seal during installation and use	AS4716			В	Yes	Yes	1.0 m/s		69 MPa in Tandem T-seal configuration)	
Turcon [®] AQ-Seal [®] 5	 Excellent sealability between gas and oil Low-friction and 		R	s							
	leak-tight	AS4716 (only 300 and 400 series)			B	Yes	No	9.8 ft/s 3.0 m/s	-65 to +390°F -54 to +200°C	5000 psi 35 MPa	

KEY TO MOVEMENT:

Reciprocating = R

Rotary = T

Oscillating = O

Helix = H Static = S Double acting (Bidirectional)= B

KEY TO PRESSURE DIRECTION: Single acting (Unidirectional) = U * Temperature range is dependent upon material selection.

** Pressure is dependent upon material and gap dimension. Avoid combining extreme limits.

Description	Seal
Developed over the past few years as a new generation unidirectional rod seal. The design has taken the latest empirical and theoretical experience into account in order to optimize performance, friction, leakage and service life. This has been achieved and proven through in-house testing and qualified in customer applications. Its unique back-pumping effect allows the seal to prevent pressure from being trapped between tandem un-vented seals or between seals and double-acting scrapers.	Turcon® VL Seal®
A superior double acting slipper seal design has a contoured seal cap, formed to match the lemon shaped elastomer ring. The special elastomer allows more room for cap thickness, extending service life and activating the cap equally over the width of the seal. This reduces friction and the cap can be provided with grooves in order to reduce friction even further.	Turcon [®] Plus Seal [®] II
The original slipper seal, it has a delta-shaped cap activated by an Turel [®] O-Ring. The seal has low friction and good leakage control in dynamic applications.	Turcon® Double Delta® II
A triangular shaped elastomer part, protected against extrusion, rolling and spiraling by two delta rings. The minimized elastomer footprint on the dynamic surface ensures excellent leakage control with a reduced tendency to adhere to the sealing surface.	Turcon [®] Wedgpak [®]
Primarily recommended for static application, the seal has good leakage control. Its unique shape prevents it from rolling or spiraling in the gland at installation.	Turcon® T-Seal
This unique seal design was developed from the original Turcon [®] AQ-Seal [®] . Its enlarged cap allows it to be centrally positioned in the groove for a X-Ring seal. The seal has the excellent leakage control of an elastomer contact seal, but at the same time, a very low friction and long service life. This is because the X-Ring seal is energized by the squeeze and not by system pressure. Specially designed to separate fluids and gases in dynamic applications.	Turcon® AQ-Seal® 5

Industry Specific Products

							Annli	cation			
Seal	Features	Gland	-	ve- ent	Pressure Direction			Speed Limit	Temperature Range*	Pressure * *	
Turcon® Variseal®	 Spring-energized seal Chemical-resistance optimized 	AS4716 (Groove	R T	S				49.2 ft/s	-460 to +500°F	5,000 psi 35 Mpa (10,000 psi	
	 Wide temperature range Several spring designs available Unlimited shelf life 	may have to be split for installation)	о н		U	Yes	Yes		-273 to +260°C	69 MPa with Zurcon [®] Back-up Ring)	
Turcon [®] Back-up	- Spiral		R	s						5,000 psi	
Ring	- Solid - Scarf-cut - Stakbak [®] design	AS4716			B	Yes	Yes	-	-94 to +390°F -70 to +200°C	35 Mpa (10,000 psi 69 MPa with Zurcon [®] Back-up Ring)	
Turcon [®] Dual Piston Ring	- Spring-energized seal - Low-friction		R								
	- Metallic expander - Wide temperature range	TSS gland standard which reflect			В	Yes	No	49.2 ft/s	-94 to +500°F	5,000 psi	
	 Controlled leakage Saves space by using narrow glands 	AS4716 bore diameters				163	NO	15.0 m/s	-70 to +260°C	35 MPa	
	- Low hysteresis - Unlimited shelf life										
Turcon [®] Glyd Ring [®]	- Optimum slipper seal - Low-friction	TSS gland	R	s						5,000 psi 35 Mpa	
	- Long service life - Saves space by using	standard which reflect AS4716	Т		в	Yes	Yes	49.2 ft/s 15.0 m/s	-65 to +390°F -54 to +200°C	(10,000 psi 69 MPa	
	narrow gland	rod & bore diameters	о н							with Zurcon [®] Back-up Ring, Corner Reinforced Version)	
Turcon [®]	Excellent primary seal		R								
Stepseal [®] 2K	- High-pressure capability - Pressure relieving	TSS gland standard which reflect						/19 2 ft/s	-65 to +390°F	5,000 psi	
	effect	AS4716 rod & bore			U	Yes	Yes	1	-54 to +200°C	35 MPa	
		diameters									
Turcon® Roto Glyd Ring [®]	- Rotary seal - Low speed	TSS gland	R								
	- High-pressure	standard which reflect	Т		в	Yes	Yes	6.5 ft/s	-65 to +390°F	3,000 psi	
		AS4716 rod & bore diameters	о н					2.0 m/s	-54 to +200°C	21 MPa	

KEY TO MOVEMENT:

Reciprocating = R

Rotary = T Oscillating = O Helix = H Static = S Double acting (Bidirectional)= B

KEY TO PRESSURE DIRECTION: Single acting (Unidirectional) = U * Temperature range is dependent upon material selection.

** Pressure is dependent upon material and gap dimension. Avoid combining extreme limits.

Description	Seal
A single-acting slipper seal activated by a metal spring. The seal is often used in conditions where there are extreme temperatures, aggressive chemical media and a long storage life. It gives low-friction, no stick-slip, good leakage control and long service life. There are four types; M, W, H and SA.	Turcon® Variseal®
All standards and sizes available in virgin as well as filled PTFE compounds. The patented Stakbak [®] design allows operation in an extended range of temperatures and pressures.	Turcon [®] Back-up Ring
The seal is energized by a Stainless Steel wave-shaped spring. The characteristics of the seal are very low-friction, long service life and controlled leakage. Dual Piston Rings can be supplied with various spring types, depending upon application.	Turcon [®] Dual Piston Ring
An all-round seal for hydraulic and pneumatic applications. The seal design combines the experience of years of field test and laboratory research into a highly efficient and reliable low-friction seal for both high and low pressure systems. It has the special advantage that gland width can be reduced, for example, in spool valves.	Turcon [®] Glyd Ring [®]
The seal consists of a patented step cap, activated by an O-Ring. A further development of the slipper seal incorporating an active back-pumping effect when used with a secondary seal. This avoids pressure build-up during long strokes.	Turcon [®] Stepseal [®] 2K
The seal is designed with chamfers, notches, and tangential or circumferential grooves. Energized by an O-Ring, the seal has no interference fit to reduce frictional heat generation. Suitable for high-pressure and low speed applications.	Turcon® Roto Glyd Ring®

Industry Specific Products

							A				
							Арри	ication			
Seal	Features	Gland			Pressure Direction	Piston	Rod	Speed Limit	Temperature Range*	Pressure * *	
Turcon [®] Varilip [®] PDR	- Rotary seal - Low-friction - Dry running		т								
	capability - Chemical resistance optimized - Outperforms	Gland to suit application	0		U	No	Yes	65.6 ft/s 20.0 m/s	-76 to +390°F -60 to +200°C	290 psi 2 MPa	
	traditional Oil seals		н								
Turcon [®] Excluder [®] DC	- Optimum scraping effect		R								
	- Dual lip for optimized effect - Vented version	AS4716, TSS & MS33675	т					49.2 ft/s	-65 to +390°F		
	available	Gland standards	0		U	No	Yes	15.0 m/s	-54 to +200°C	-	
			н								
Turcon [®] Variseal [®] Scraper	- Spring-energized scraper - Wide temperature	AS4716, ,	R								
	range - Chemical resistance optimized	AS4052 Rev. B Type II (Groove may	т					49.2 ft/s	-94 to +500°F		
		have to be split for installation	0		U	Yes	Yes	15.0 m/s	-70 to +260°C	-	
		in small diameters)	н								
Turcon [®] Slydring [®] Orkot [®] Wear Ring Zurcon [®] Wear Ring	- High load bearing capability - Wear resistant		R	s							
	- No rod scoring - Protects seals	TSS Gland Standard which reflect	т			No	N	(depend- ing upon	-76 to +500°F		
		AS4716 Rod and Bore diameters	0		В	Yes	Yes		-60 to +260°C	-	
		anneters	н								
Turcon [®] HST Seal	- Flange seal - Absorbs pulsing and			s							
	vibration - Internal and external version - Easy installation	TSS Face Gland Standard			U	Exter- nal	Inter- nal	-	-65 to +390°F -54 to +200°C	10,000 psi 69 MPa	

KEY TO MOVEMENT:

Rotary = T Oscillating = O

Helix = H Static = S Double acting (Bidirectional)= B

KEY TO PRESSURE DIRECTION: Single acting (Unidirectional) = U * Temperature range is dependent upon material selection.

** Pressure is dependent upon material and gap dimension. Avoid combining extreme limits.

Reciprocating = R

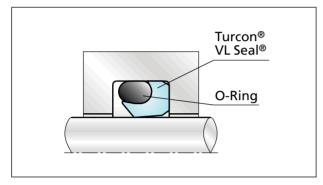
Description	Seal
The metal or plastic casing of the seal incorporates one, two or three seal lips in the same or reversed directions, depending upon the chosen design and requirements for the application. Designed for fast rotating shafts the seal gives a long service life and minimal friction combined with very good leakage control.	Turcon [®] Varilip [®] PDR
A solid ring with dual scraper lip contact, activated by an O-Ring, gives the excellent performance. In the Excluder [®] , the primary lip prevents dust and ice from penetrating the system during the in-stroke of the rod while the secondary lip stops the oil film from going out of the system during the out-stroke.	Turcon [®] Excluder [®] DC
A spring-energized seal with optimized scraping angle, Variseal [®] Scraper is designed for extreme working temperatures, high speeds and for contact with aggressive media.	Turcon [®] Variseal [®] Scraper
Wear rings made from polymeric materials offer many advantages over metallic bearings. Among these are low friction, long wear life, easy replacement and low cost. They also protect seals by providing a buffer for contamination and pressure peaks.	Turcon [®] Slydring [®] Orkot [®] Wear Ring Zurcon [®] Wear Ring
A flange version of the standard T-seal, the optimized shape of the elastomer ring is leak-tight even in application situations where there is pulsing and vibration present. The ring of Turcon® or Zurcon® protects against extrusion.	Turcon [®] HST Seal

Seals and Back-up Rings for AS4716 grooves

Turcon [®] VL Seal [®]	63
Turcon [®] Variseal [®]	69
Turcon [®] Plus Seal [®] II	103
Turcon [®] Double Delta [®] II	115
Turcon [®] Wedgpak [®] II	127
Turcon [®] T-Seal	137
Turcon [®] AQ-Seal [®] 5	145
Back-up Rings and Stakbak [®]	149

Features and benefits

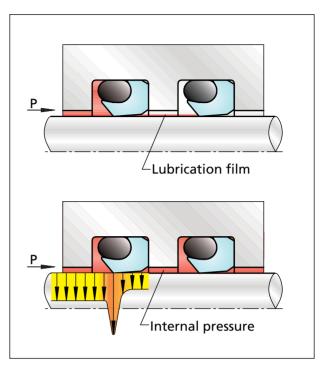
- Tight leakage control
- Unique hydrodynamic back-pumping effect maximizes leakage control
- Avoids the trapping of pressure between tandem seal or between seals and scrapers
- Low friction due to a reduced contact area between seal and mating surface
- Continuously lubricated
- Long service life
- Simple design
- Uses standard size O-Ring as an energizer
- Most AS4716 gland sizes available (compatible with MIL-G-5514F)
- Not available in 000 Series
- US Patent No. 6,497,415

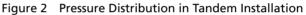

Illustration shows typical hydraulic cylinder with a sealing configuration incorporating Turcon[®] VL Seal[®].

Description

The Turcon[®] VL Seal[®] was developed as the next generation unidirectional rod seal. It incorporates leading-edge design and development techniques to optimize frictional behavior, leakage control and service life. Performance parameters are backed up with results from in-house testing and qualified customer applications.

Important to the function of the Turcon[®] VL Seal[®] is the Trelleborg Sealing Solutions unique back-pumping effect. This prevents pressure from being trapped between tandem seals or between seals and doubleacting scrapers.




Method of Operation

The sealing mechanism of the Turcon[®] VL Seal[®] (Figure 1) is based on the hydrodynamic properties of the seal. The specially formed seal edge has a steep contact pressure gradient on the high-pressure side and a shallow contact pressure gradient on the low-pressure side. This ensures that the fluid film adhering to the piston rod is returned to the high-pressure chamber on the return stroke of the rod. The micro-fluid layer that is carried out of the high-pressure chamber when the piston rod is extended is therefore prevented from causing leaks.

The return delivery property of the Turcon[®] VL Seal[®] prevents the build-up of the inter-stage pressure that is normally associated with tandem seal configurations (Figure 2). Inter-stage pressure depends on system pressure speed, stroke length and groove design.

The presence of hydraulic oil around the seal ensures a very long service life, as the seal will always be adequately lubricated.

Technical Data

Operation pressure:	5000 psi/ 35 MPa
Speed:	Up to 49.2 ft/s/ 15.0 m/s with reciprocating movements
Temperature range:	-65°F to +390°F/ -54°C to +200°C depending on elastomer material
Clearance:	Per AS4716 guidelines, larger clearances are possible.
Media:	Mineral oil-based hydraulic fluids, flame-retardant hydraulic fluids, environmentally-safe hydraulic fluids (bio-oils), phosphate ester, water and others, depending on the elastomer material

Avoid combining extreme limits.

Table I Turcon[®] VL Seal[®] Types

Seal	Turcon [®] VL Seal [®] Width		
Jean			
Туре	0 BUR (G ₀)	1 BUR (G ₁)	2 BUR (G ₂)
100 Series	Q		
	REL10	REL1_ ¹⁾	REL1_ ²⁾
200 Series			
	REL20	REL2_ ¹⁾	REL2_ ²⁾
300 Series			
	REL30	REL3_ ¹⁾	REL3_ ²⁾
400 Series			
	REL40	REL4_ ¹⁾	REL4_ ²⁾

- G denotes groove width; zero, one or two back-up width

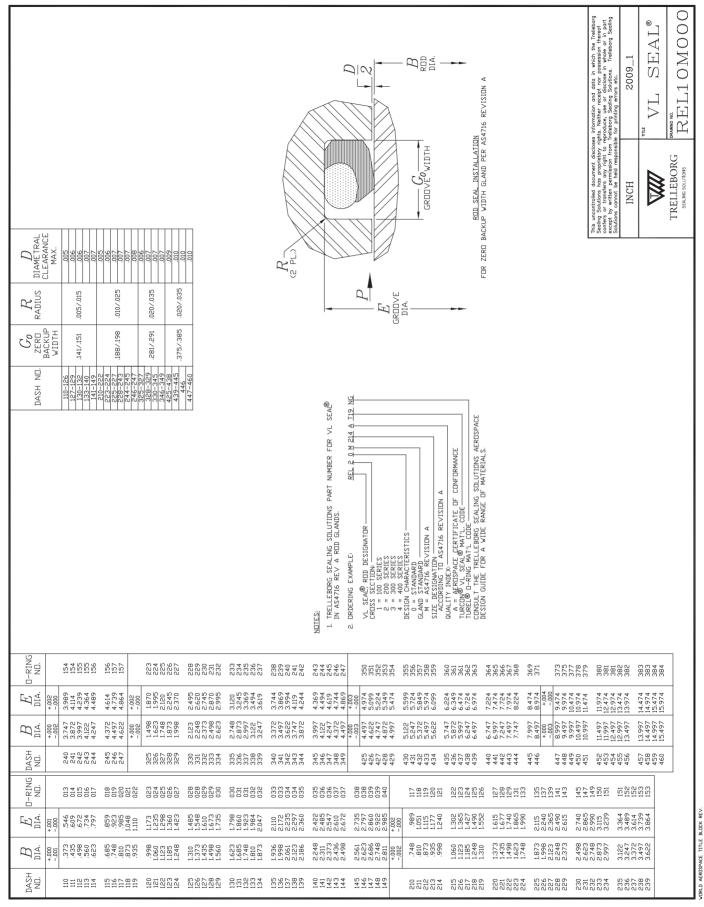
- BUR - Back-up Ring

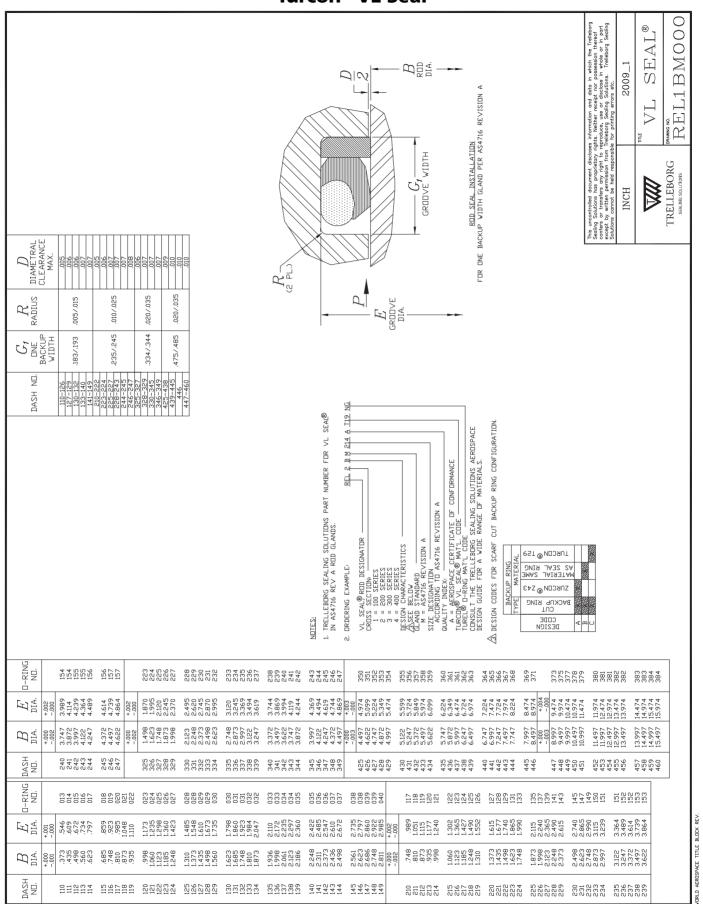
- Not recommended below 0.600 in/ 15 mm in closed grooves

- 1 or 2 B/U groove width recommended below 1.000 in/ 25 mm for installation

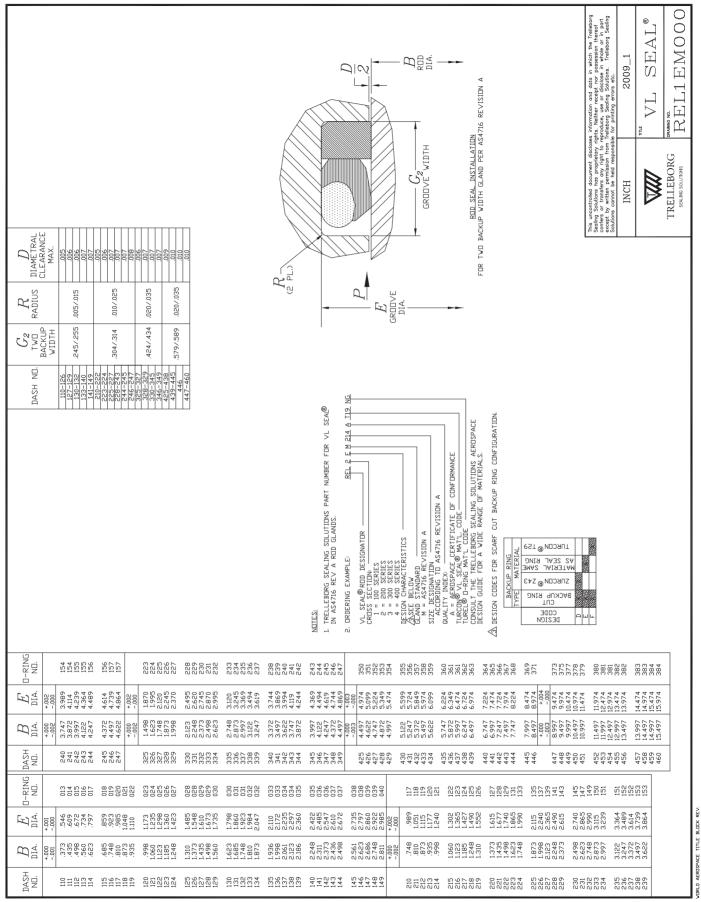
 $^{1)}$ 5th character - Design characteristics codes for scarf cut Back-up Ring configuration: A = Cut BUR in Zurcon[®] Z43

B = Cut BUR in same material as seal


C = Cut BUR in Turcon[®] T29


 $^{2)}$ 5th character $\,$ - Design characteristics codes for scarf cut Back-up Ring configuration: D = Cut BUR in Zurcon[®] Z43 E = Cut BUR in same material as seal

F = Cut BUR in Turcon[®] T29



Turcon[®] VL Seal[®]

Features and benefits

- Good dynamic and static sealing
- Very low coefficient of friction
- Very good dry-running properties
- Operating temperature of -423°F to +500°F/ -253°C up to +260°C
- Very good thermal resistance
- Almost universal chemical compatibility
- Permanent elasticity unaffected by contact with chemicals
- Capable of sealing at high speeds up to 49 ft/sec/ 15 m/s
- Capable of withstanding high pressures above 29,000 psi/ 200 MPa when using Back-up Rings
- Excellent leak tightness
- High resistance to wear
- No extrusion into gaps
- Low compression set
- Withstands aggressive and abrasive process media
- Good aging characteristics
- Compact form
- Simple installation
- Can be installed in grooves according to MIL-G-5514F and DIN 3771
- Standard products are available from 0.079 in/ 2 mm up to 8 ft 2 in/ 2,500 mm in diameter along with custom manufactured intermediate sizes, inch sizes or special geometries.

Illustration shows typical hydraulic cylinder with a sealing configuration incorporating Turcon[®] Variseal[®] of different types.

Description

The Turcon[®] Variseal[®] range is made up of singleacting spring-energized seals that are used in dynamic and static situations. Turcon[®] Variseal[®] is available in a range of geometries and designs that allow the optimum profile to be selected for a wide range of applications.

Turcon[®] Variseal[®] is chosen when high resistance to chemical media is required, if the seal needs to operate in extremes of temperature and where good extrusion or compression characteristics are needed.

Turcon[®] Variseal[®] has three main design characteristics:

- 1. Application specific U-shaped seal profile
- 2. Spring geometry suited to the particular application
- 3. Proven high-performance Turcon[®] or Zurcon[®] polymers

Method of Operation

All Turcon[®] Variseal[®] included in this catalog have the same operating principle and differ only in their profile form and type of metallic spring used.

The Turcon[®] Variseal[®] spring supplies the load required for sealing at low pressures (Figure 1). The U-shaped jacket allows fluid pressure to energize the sealing lips, so total sealing pressure rises with increasing operating pressure (Figure 2).

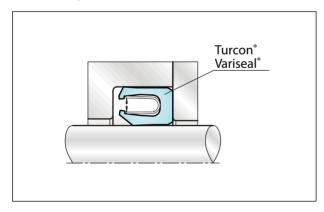


Figure 1 Turcon[®] Variseal[®] without system pressure

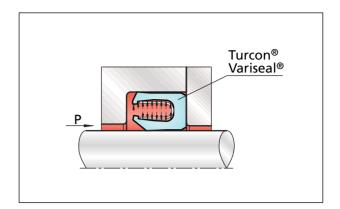


Figure 2 Turcon[®] Variseal[®] with system pressure

Spring Types

A metal spring is incorporated into Turcon[®] Variseal[®] to provide elasticity to the seal. This makes the seal permanently elastic, despite changes in operating temperature, pressure or chemicals processed. Each of the three spring types used in Turcon[®] Variseal[®] has unique properties that give them their performance characteristics. The two most important properties of the spring, besides the corrosion resistance of the metal, are load value and deflection range. The spring load affects sealing ability, friction and the wear rate of the seal. The deflection range determines the ability of Turcon[®] Variseal[®] to withstand wear and compensates for variations in gland dimensions.

V Spring

V Spring is the standard spring type for Turcon[®] Variseal[®] M2, Turcon[®] Variseal[®] M2S and Turcon[®] Roto Variseal[®]. It operates as a set of cantilever beams, extending from an arc at the bottom of the spring. The shape of the spring causes the load to be focused on the front edge of the sealing lip, giving the seal a positive wiping action. The V spring has a moderate load and deflection range.

Helical Spring

The Helical spring, used in Turcon[®] Variseal[®] H and Turcon[®] Variseal[®] HF, is made from a flat strip formed into a helical coil spring. It has a much higher unit

load and a shorter deflection range than the other spring types. Therefore, it is best suited to static or slow dynamic applications, where friction and wear are not the key issues. Variseal[®] H and Variseal[®] HF are the best choices for vacuum, gas and low-temperature applications.

Slantcoil[®] Spring

The proprietary Slantcoil[®] spring used in Turcon[®] Variseal[®] W consists of round wire formed into slanted coils and has a relatively constant load over a wide deflection range. This allows accurate control of friction during the working life of the seal. Its unique design makes it almost impossible to damage the spring by excessive deformation of the seal.

Spring Materials

The standard spring material for Turcon[®] Variseal[®] is Stainless Steel AISI 301 (spring code S). In addition, Hastelloy[®] (spring code H) and Elgiloy[®] (spring code E) are available for specific applications.

Note:

Hastelloy[®] is a registered trademark of Cabot Corporation.

Elgiloy[®] is a registered trademark of Elgiloy Company.

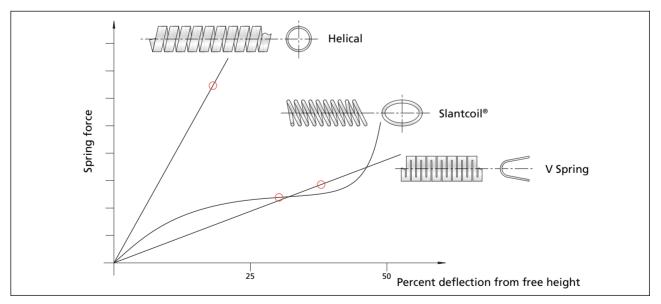


Figure 3 Comparison of load curves for the three spring types. The "o" represents the load point when the seals are installed in the gland.

Table I Turcon[®] Variseal[®] Rod Seals

ТҮРЕ	0 BUR (G ₀)	1 BUR (G ₁)	2 BUR (G ₂)
M2			
	RVA_0	RVA ¹⁾	RVA ²⁾
Helical			
	RVE_0	RVE ¹⁾	RVE ²⁾
W2			
	RVJ_0	RVJ ¹⁾	RVJ ²⁾
Slantcoil [®] SA			
	RVP_0	RVP ¹⁾	RVP ²⁾

Table II Turcon[®] Variseal[®] Piston Seals

ТҮРЕ	0 BUR (G ₀)	1 BUR (G ₁)	2 BUR (G ₂)
M2			
	PVA_0	PVA ¹⁾	PVA ²⁾
Helical			
	PVE_0	PVE ¹⁾	PVE ²⁾
W2	PVJ_0	PVJ_1)	PVJ_ ²⁾
	FVJ_0	FVJ /	FVJ /
Slantcoil [®] SA			
	PVP_0	PVP ¹⁾	PVP ²⁾

- G denotes groove width; zero, one or two back-up width

- BUR - Back-up Ring

¹⁾ 5th character - Design characteristics codes for scarf cut Back-up Ring configuration:

- A = Cut BUR in Zurcon[®] Z43
- B = Cut BUR in same material as seal
- C = Cut BUR in Turcon[®] T29

²⁾ 5th character - Design characteristics codes for scarf cut Back-up Ring configuration:
 D = Cut BUR in Zurcon[®] Z43

- E = Cut BUR in same material as seal
- F = Cut BUR in Turcon[®] T29

Description

Turcon[®] Variseal[®] M2 is a single-acting seal consisting of a U-shaped jacket and a V-shaped corrosion-resistant spring.

Turcon[®] Variseal[®] M2 has an asymmetric seal profile. The heavy profile of its dynamic lip with an optimized front angle offers good leakage control, reduced friction and long service life.

Areas of Application

- Hydraulic actuators and Cylinders
- Spindles
- Pumps
- Valves

Advantages

- Suitable for reciprocating and rotary applications
- Low coefficient of friction
- Stick-slip-free operating
- High abrasion resistance
- Withstands rapid changes in temperature
- Available in Hi-Clean[®] (Silicone-filled) version
- Excellent resistance to aging
- Interchangeable with O-Ring and Back-up Ring combinations to AS4716

Technical Data

Operating Pressure: Maximum dynamic: Maximum static:	6,527 psi/ 45 MPa 8,700 psi/ 60 MPa
Speed:	Reciprocating up to 49 ft/s/ 15 m/s Rotating up to 3 ft/s/ 1 m/s
Operating Temperature	: -94°F to +500°F/ -70°C to +260°C
Media:	Virtually all fluids, chemicals and gases

Note: At high temperatures, operating pressures and speeds are lower.

Turcon[®] Variseal[®] Helical

Description

Turcon[®] Variseal[®] H is a single-acting seal consisting of a U-shaped jacket and a helical wound corrosion resistant spring.

The helical ribbon spring of Turcon[®] Variseal[®] H has high spring-loading, which gives excellent sealing integrity at low pressure and even in a vacuum. Variseal[®] H is suitable for static applications and ideal in low speed situations.

Areas of Application

- Compressors
- Ball valves
- Vacuum or gas-tight sealing
- Very low temperatures

Advantages

- High contact pressure
- Excellent sealing integrity in gas and fluid applications
- Withstands rapid changes in temperature
- Good sealing ability when surfaces are not ideal
- No assembly tools are required for larger diameter seals
- Excellent resistance to aging
- Interchangeable with O-Ring and Back-up Ring combinations to AS4716

Technical Data

Operating Pressure: Maximum dynamic: Maximum static:	2,900 psi/ 20 MPa 11,600 psi/ 80 MPa					
Speed:	Reciprocating up to 16 ft/s/ 5 m/s Rotating up to 0.3 ft/s/ 0.1 m/s					
Operating Temperature: -248°F to +500°F/ -120°C to +260°C						
Media:	Virtually all fluids, chemicals and gases					
Note:	At high temperatures, operating pressures and speeds are lower.					

Description

Turcon[®] Variseal[®] W2 is a single-acting seal consisting of a U-shaped jacket and a corrosion-resistant Slantcoil[®] spring. The Slantcoil[®] spring in the Turcon[®] Variseal[®] W2 provides an almost constant load regardless of hardware, tolerances, eccentricity and seal wear.

The Variseal[®] W2 is designed for reciprocating and rotary applications over a wide range of surface speeds and temperatures. It is virtually resistant to fatigue or compression set since the internal stresses of the Slantcoil[®] spring geometry are very low.

Areas of Application

- Hydraulic actuators and cylinders
- Servo valves
- Pressure switches
- Electronic equipment

Advantages

- Suitable for reciprocating and rotary applications
- Constant initial squeeze of spring over a large control area
- Almost constant friction for low-pressure applications
- Stick-slip-free operation
- High abrasion resistance
- Withstands rapid changes in temperature
- Interchangeable with O-Ring and Back-up Ring combinations to AS4716

Technical Data

Operating Pressure: Maximum dynamic: Maximum static:	2,900 psi/ 20 MPa 8,700 psi/ 60 MPa
Speed:	Reciprocating up to 49 ft/s/ 15 m/s Rotating up to 3 ft/s/ 1 m/s
Operating Temperature	: -94°F to +446°F/ -70°C to +230°C
Media:	Virtually all fluids, chemicals and gases
Note:	At high temperatures, operating pressures and speeds are lower.

Turcon[®] Variseal[®] SA

Description

Turcon[®] Variseal[®] SA is a single-acting seal with a Slantcoil[®] spring energizer. The seal was developed for aerospace hydraulic applications, particularly those requiring installation into closed groove gland positions. The special seal jacket profile and Slantcoil[®] spring enable the seal to more readily withstand the damage and deformation that other spring-energized seals can suffer when fitted into closed grooves.

Turcon[®] Variseal[®] SA is designed for reciprocating and rotary applications over a wide range of surface speeds and temperatures. The round sealing lip profile gives a wide contact area, which enhances sealing function when good leakage control is needed.

Areas of Application

- Hydraulic actuators and cylinders
- Spindles
- Pumps
- Valves

Advantages

- Suitable for installation into small diameter closed glands
- Constant initial squeeze of spring over a large control area
- Stick-slip-free operation
- Withstands rapid changes in temperature
- Interchangeable with O-Ring and Back-up Ring combinations to AS4716

Technical Data

Operating Pressure: Maximum dynamic: Maximum static:	5,000 psi/ 35 MPa 11,600 psi/ 80 MPa
Speed:	Reciprocating up to 16 ft/s/ 5 m/s Rotating up to 0.3 ft/s/ 0.1 m/s
Operating Temperature	e: -94°F to +446°F/ -70°C to +230°C
Media:	Virtually all fluids, chemicals and gases
Note:	At high temperatures, operating pressures and speeds are lower.

Latest information available at www.tss.trelleborg.com Edition August 2011

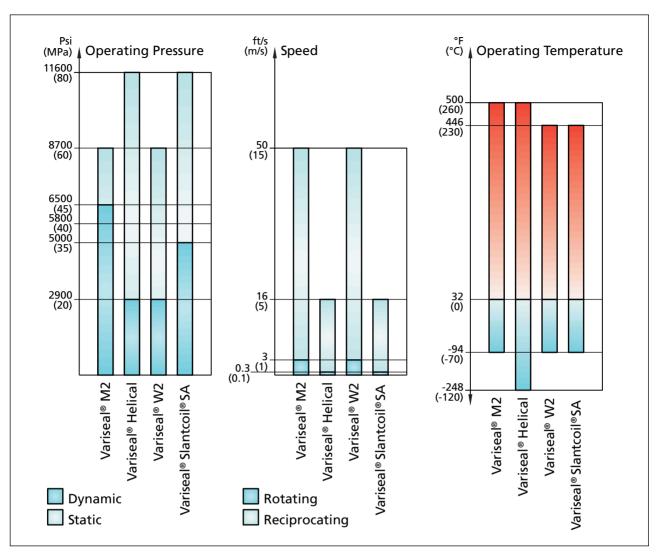
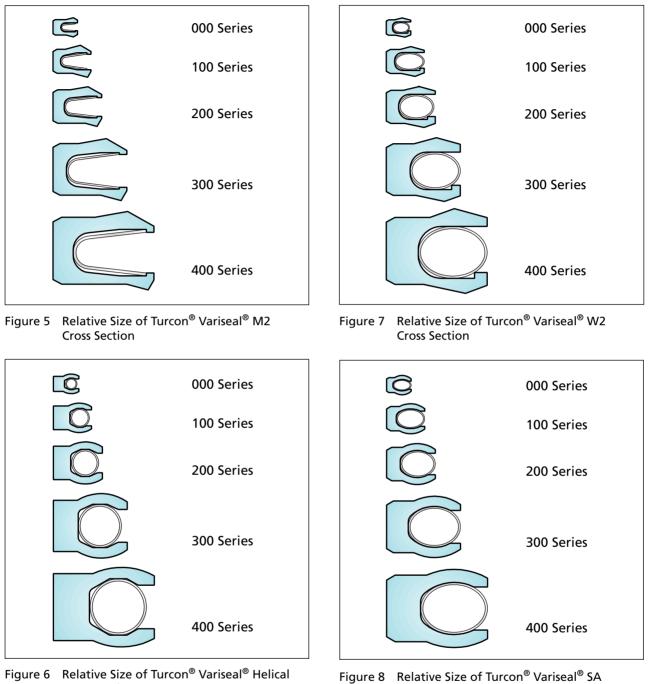



Figure 4 Main performance characteristics

Series

Cross Section

IRF

BORG

SEALING SOLUTIO

Latest information available at www.tss.trelleborg.com Edition August 2011

Cross Section

Installation in Closed Grooves

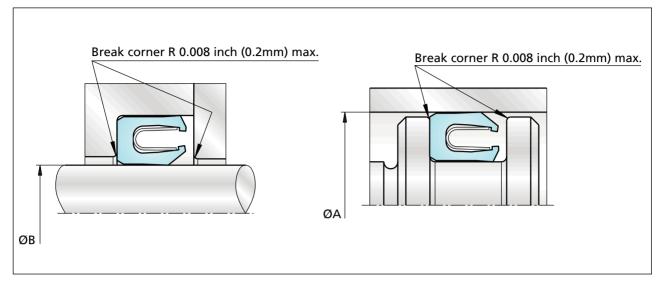


Figure 9 Installation in Closed Grooves

Installation in split or lipped grooves is recommended. Installation in closed grooves is possible for rod and bore diameters according to the following tables.

Rod Seals

Installation of Variseal[®] M2 Types into Closed Grooves, Rod Seals, Inch sizes

Rod Seals - Table of Minimum Rod dia. B								
Туре	M2	Helical	Slantcoil®	SA				
Series	RVA	RVE	RVJ	RVP				
000	1.250	1.000	1.000	0.750				
100	2.750	2.500	2.500	0.873				
200	4.375	4.250	4.250	1.000				
300	11.750	9.000	9.000	1.250				
400	19.500	15.750	15.750	3.000				
500	27.560	27.560	27.560	5.000				

Seals can be fitted into Closed Groove Rod diameter B Gland designs at these sizes and above.

Piston Seals

Installation of Variseal[®] M2 Types into Closed Grooves, Piston Seals, Inch sizes

Piston Seals - Table of Minimum Bore dia. A							
Туре	M2	Helical	Slantcoil®	SA			
Series	PVA	PVE	PVJ	PVP			
000	1.375	0.750	0.750	0.750			
100	2.000	1.380	1.380	1.380			
200	2.750	1.750	1.750	1.750			
300	4.125	2.375	2.375	2.375			
400	5.500	3.750	3.750	3.750			
500	11.800	11.800	11.800	11.800			

Seals can be fitted into Closed Groove Bore diameter A Gland designs at these sizes and above.

Installation in Stepped Grooves

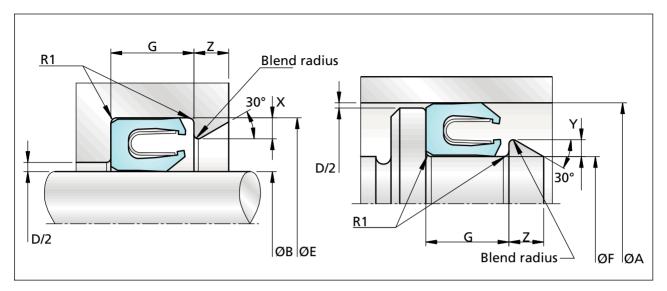


Figure 10 Stepped Grooves, Rod

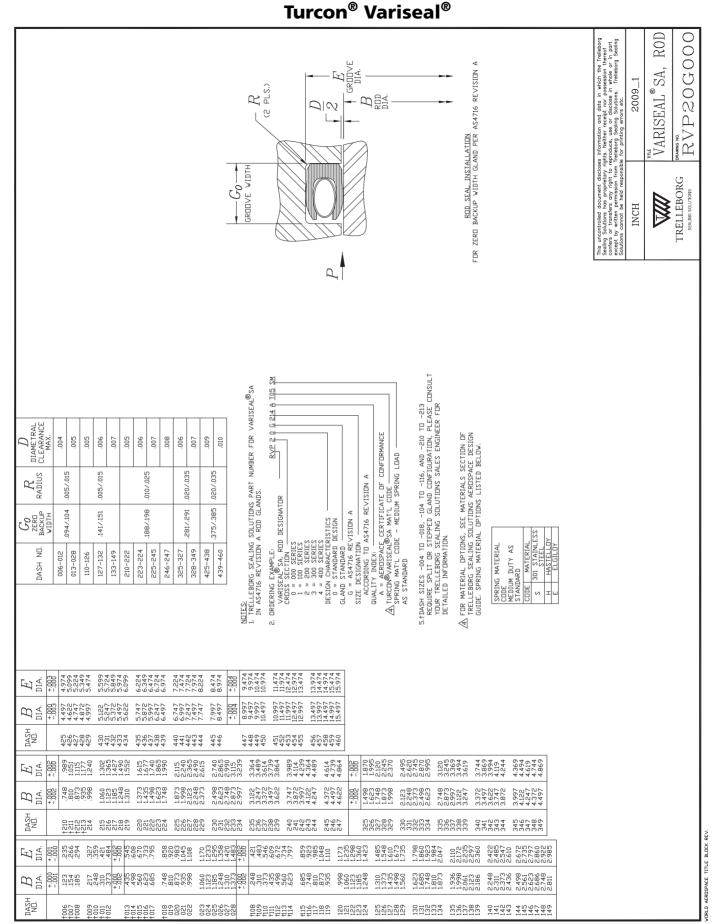
Rod Seals

Groove Dimensions, Inch Sizes, Rod Seals

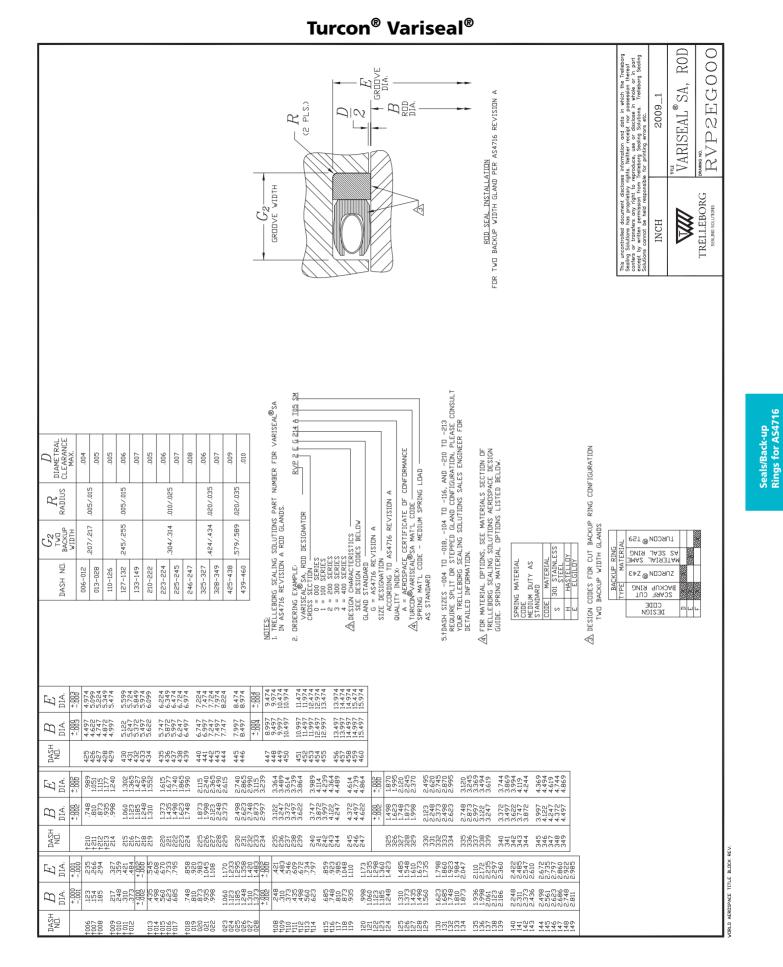
Series	M2	W2	н	SA	Lip Height X ¹⁾	Chamfer Length Z min.	Radius Max r1	Rod Dia. B (min.)
000	RVA0	RVJ0	RVE0	RVP0	.015	.098	.010	0.250
100	RVA1	RVJ1	RVE1	RVP1	.024	.138	.015	0.375
200	RVA2	RVJ2	RVE2	RVP2	.028	.138	.015	0.750
300	RVA3	RVJ3	RVE3	RVP3	.031	.177	.015	1.000
400	RVA4	RVJ4	RVE4	RVP4	.035	.295	.020	2.000
500	RVA5	RVJ5	RVE5	RVP5	.060	.295	.030	2.250

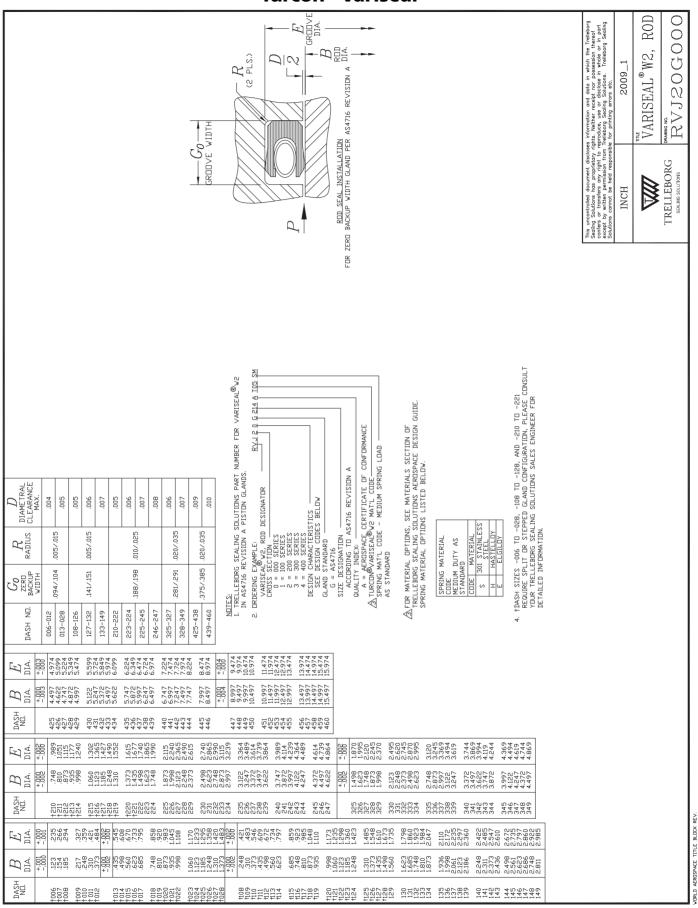
¹⁾ X max = 0.02 x ØB

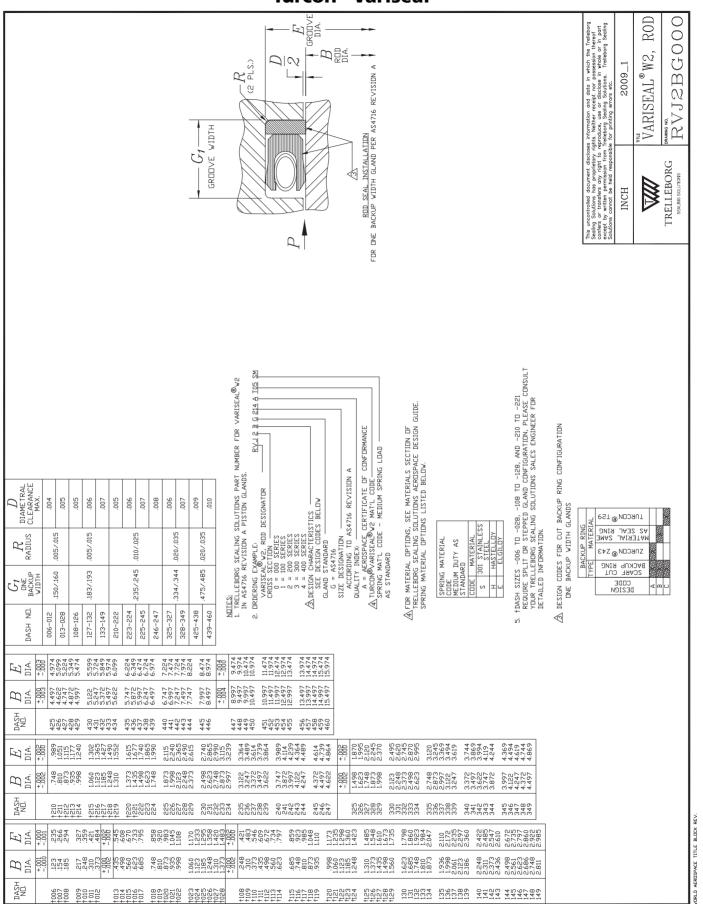
Piston Seals

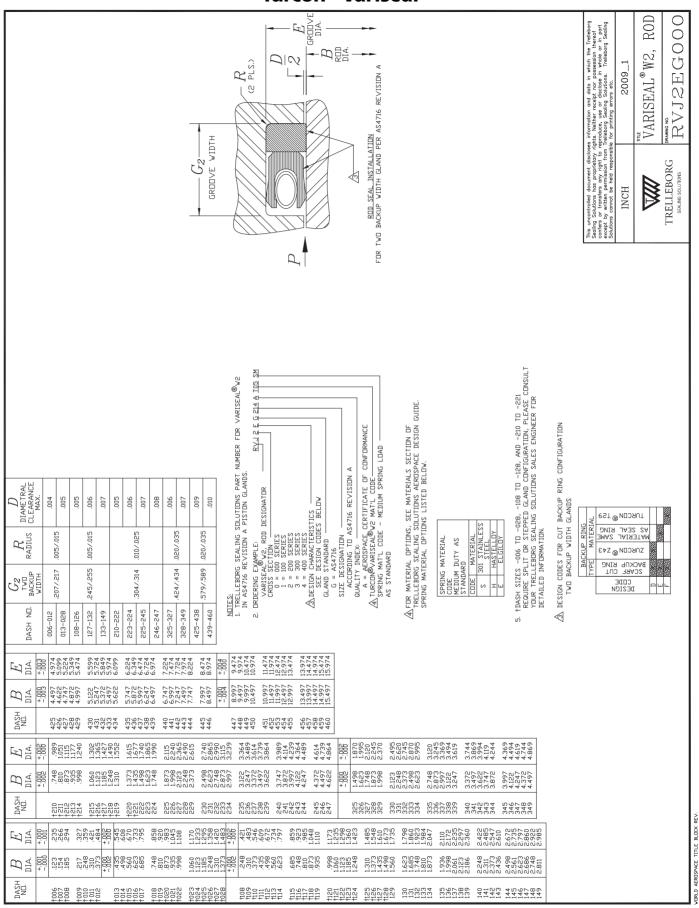

Groove Dimensions, Inch Sizes, Piston Seals

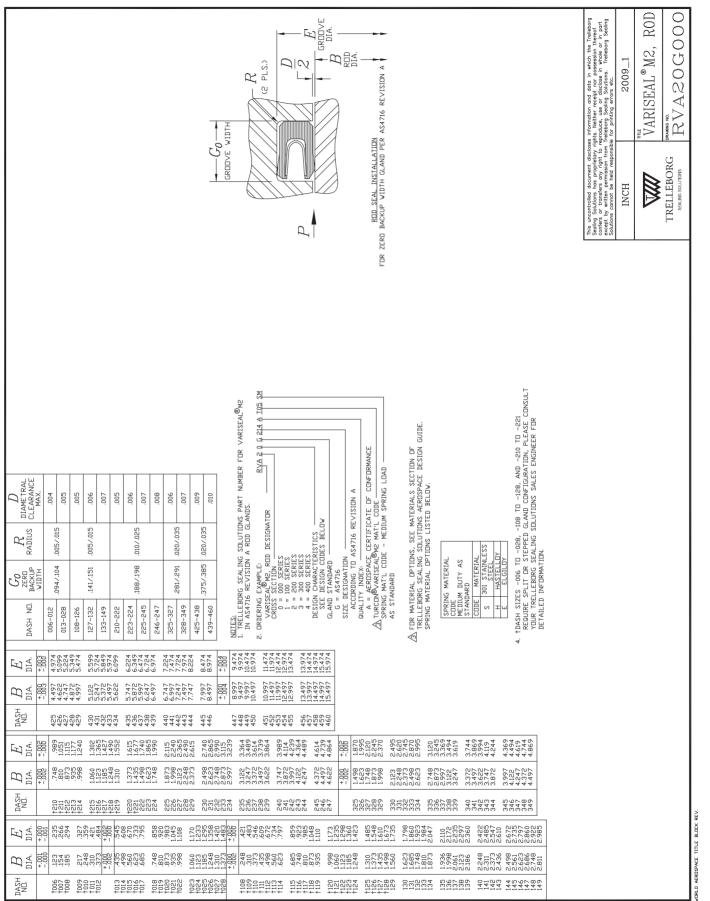

Series	M2	W2	н	SA	Lip Height Y ¹⁾	Chamfer Length Z min.	Radius Max r1	Bore Dia. A (min.)
000	PVA0	PVJ0	PVE0	PVP0	.015	.098	.010	0.375
100	PVA1	PVJ1	PVE1	PVP1	.024	.138	.015	0.562
200	PVA2	PVJ2	PVE2	PVP2	.028	.138	.015	1.000
300	PVA3	PVJ3	PVE3	PVP3	.031	.177	.015	1.375
400	PVA4	PVJ4	PVE4	PVP4	.035	.295	.020	2.500
500	PVA5	PVJ5	PVE5	PVP5	.060	.295	.030	3.000

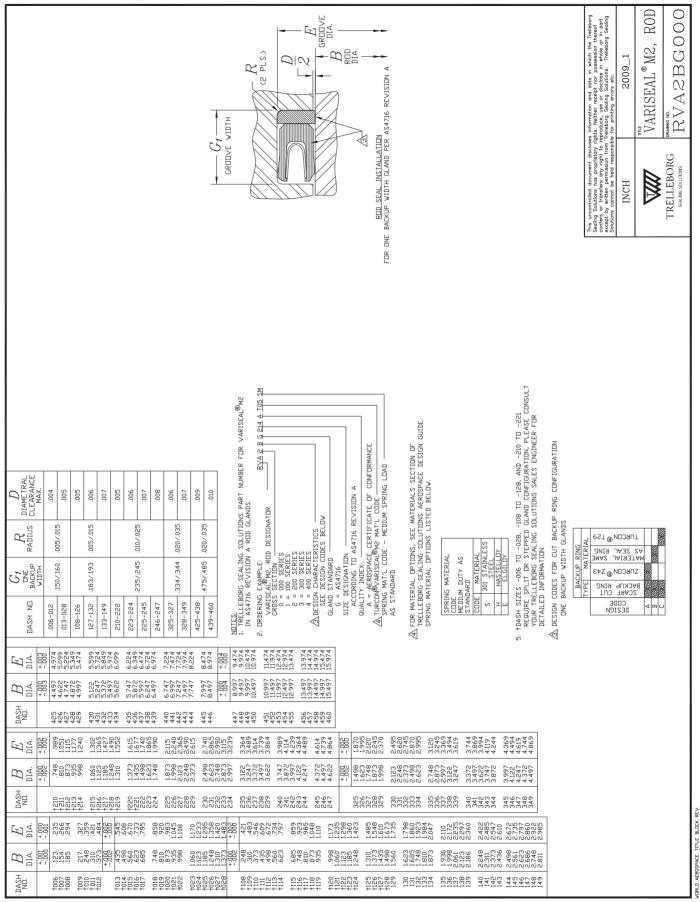

¹⁾ Y max = 0.035 x ØF

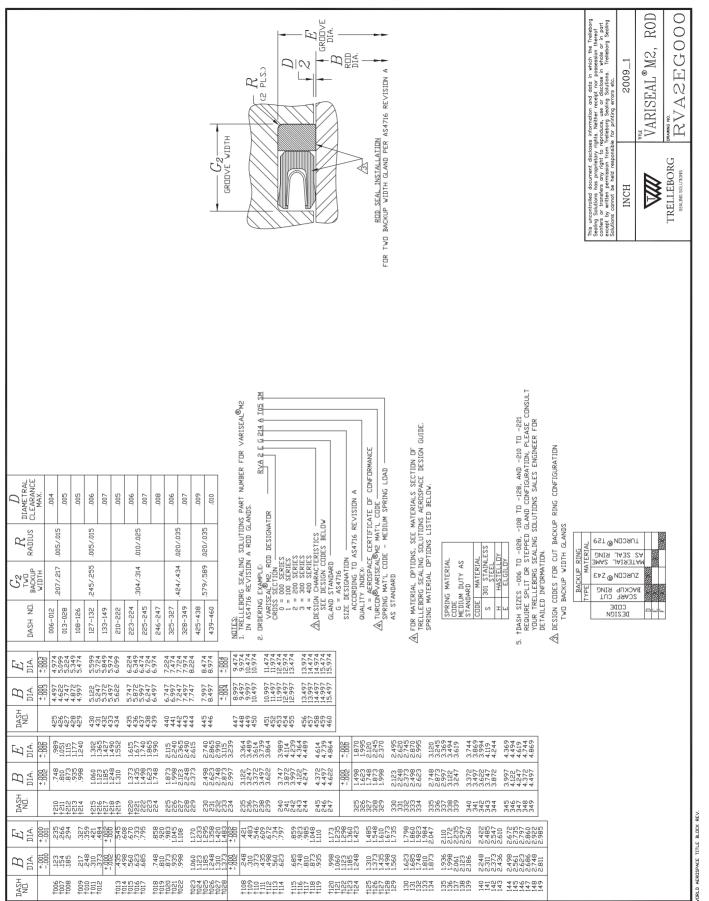

Note: The recommended dimensions for "Y", "X" and "Z" cannot always be achieved.

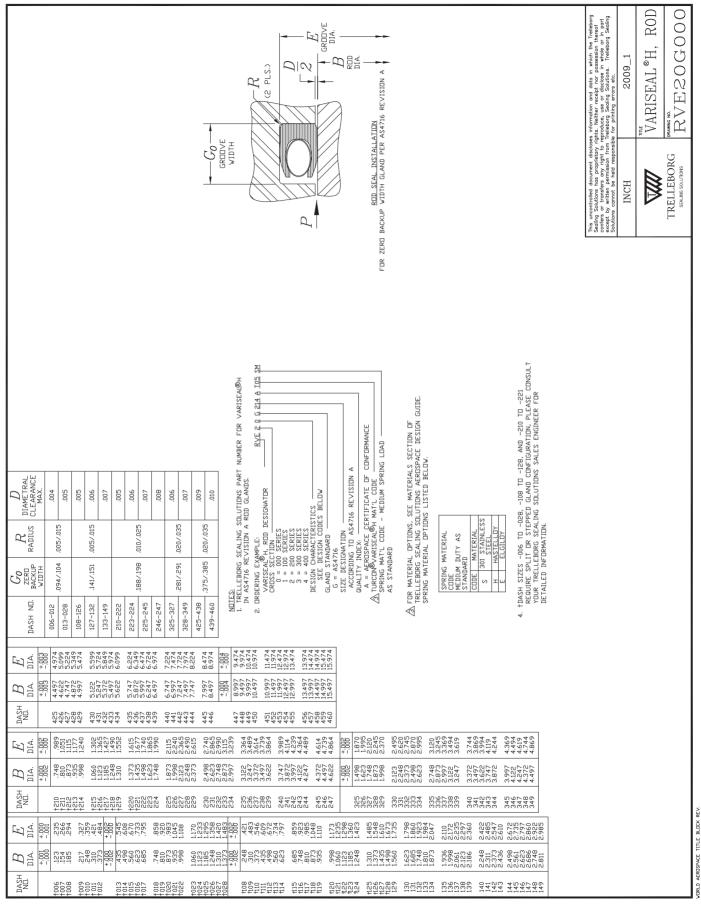


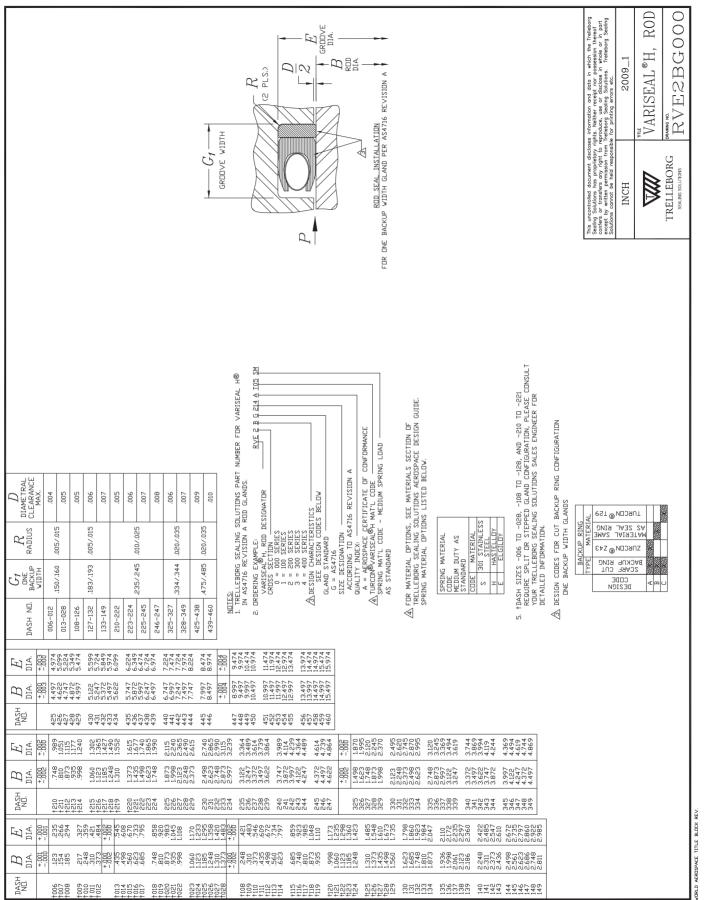


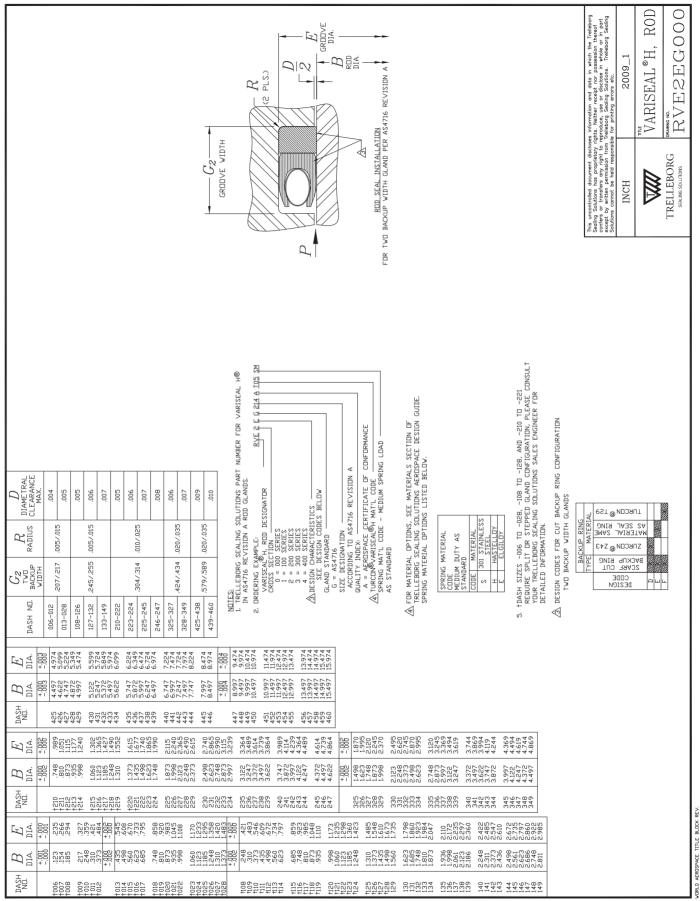


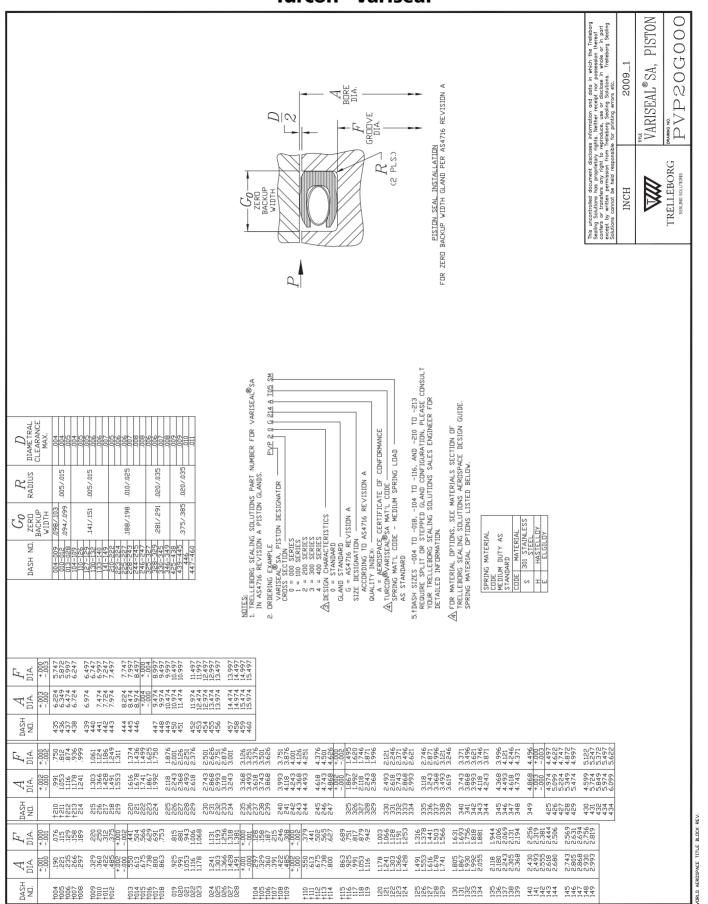


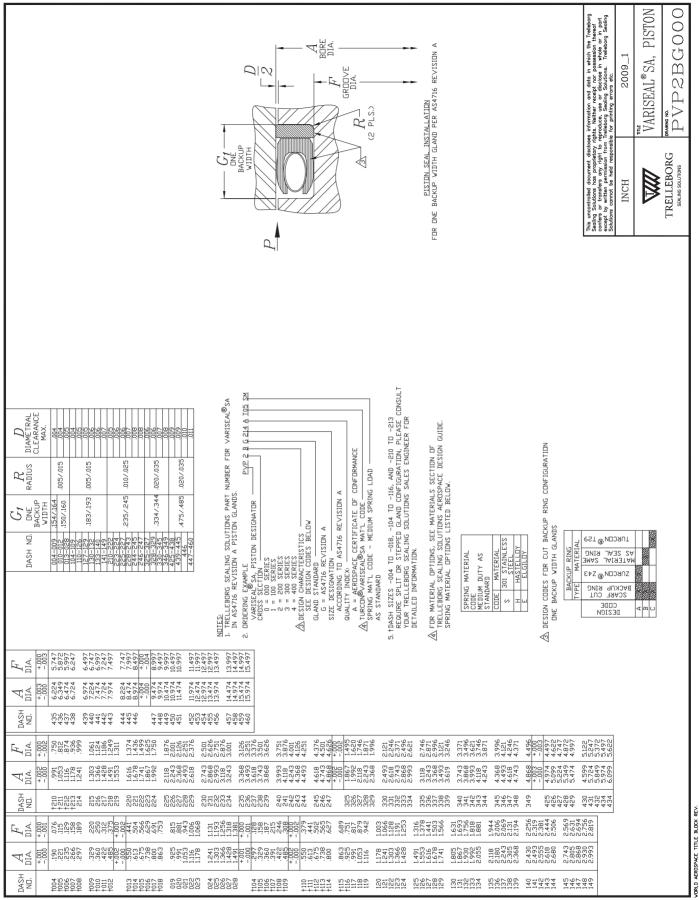


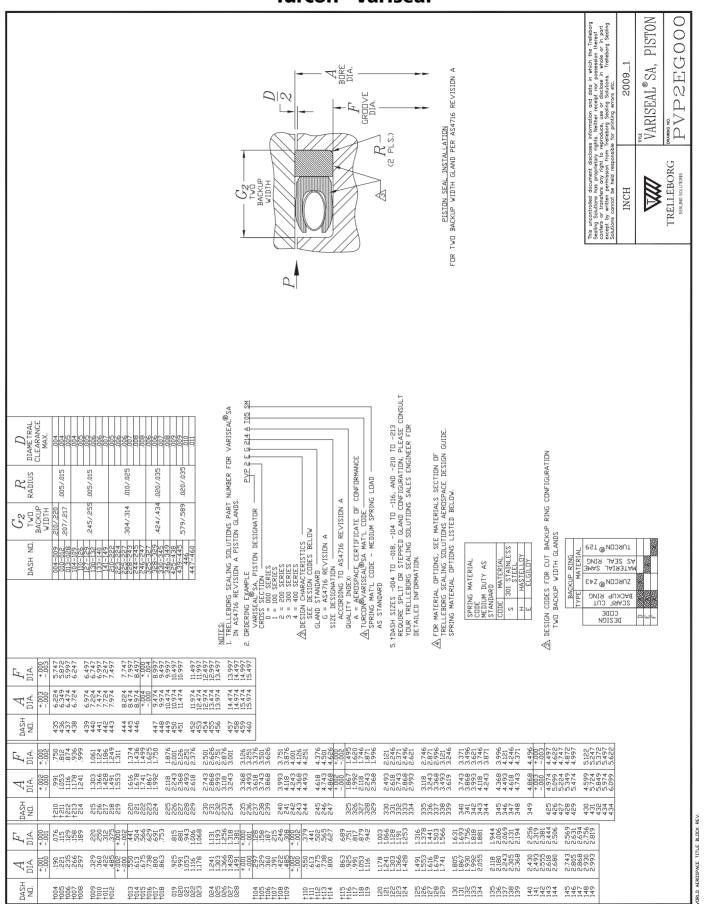


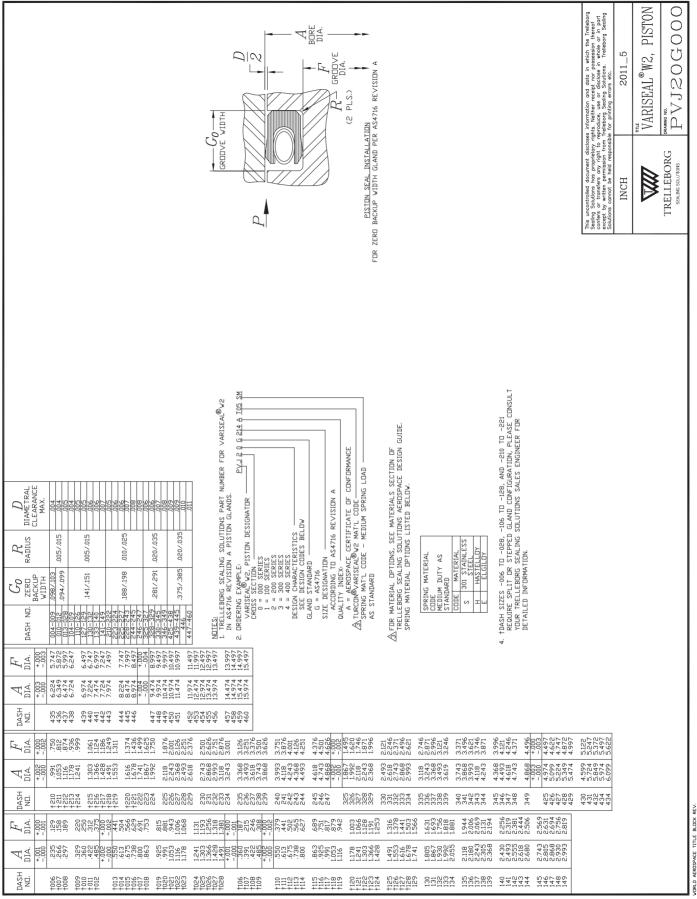


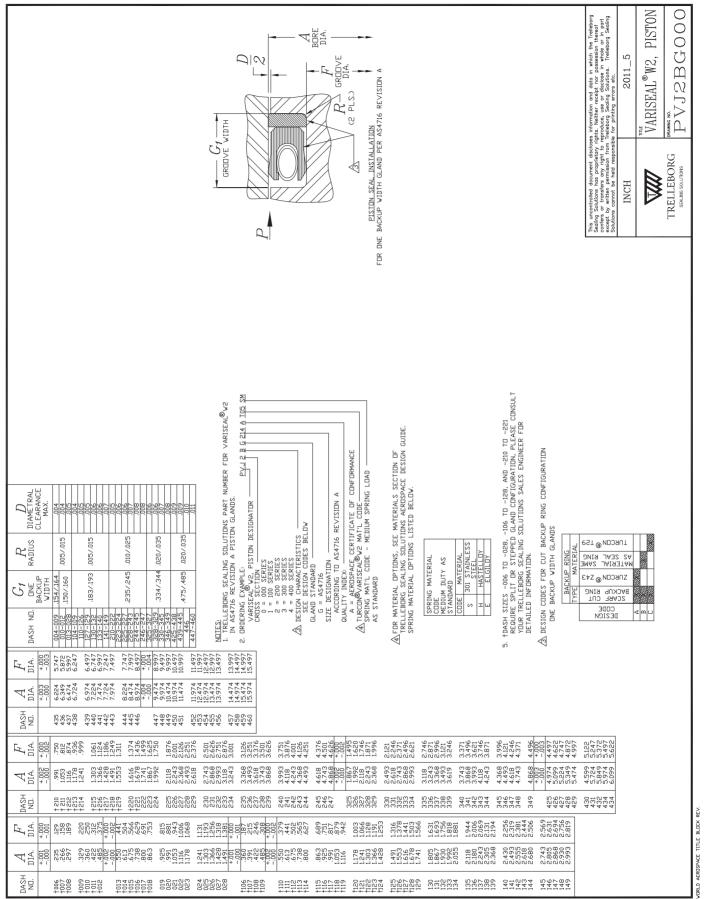


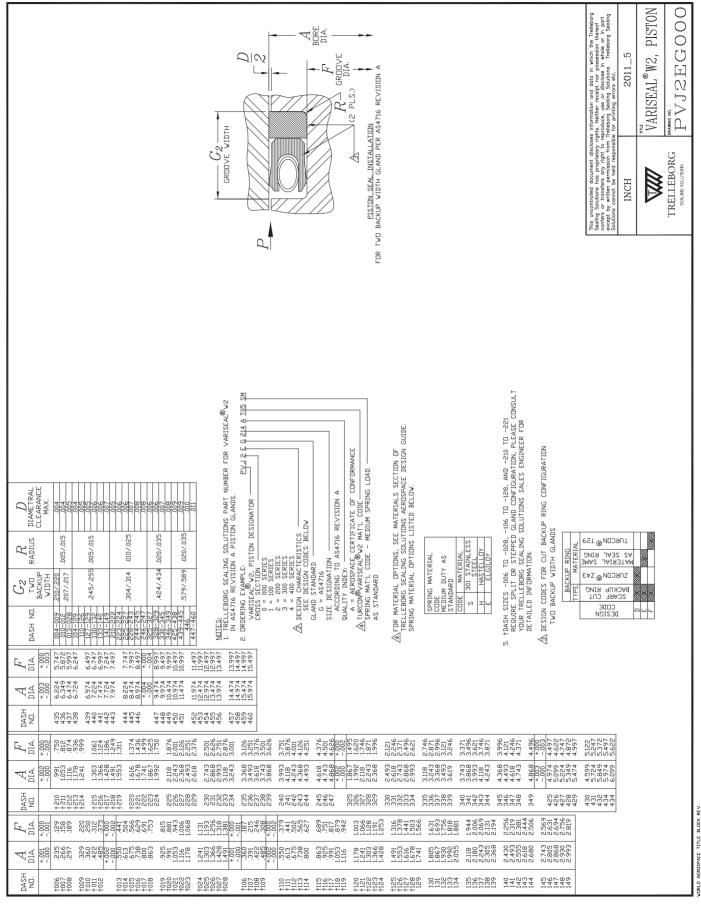


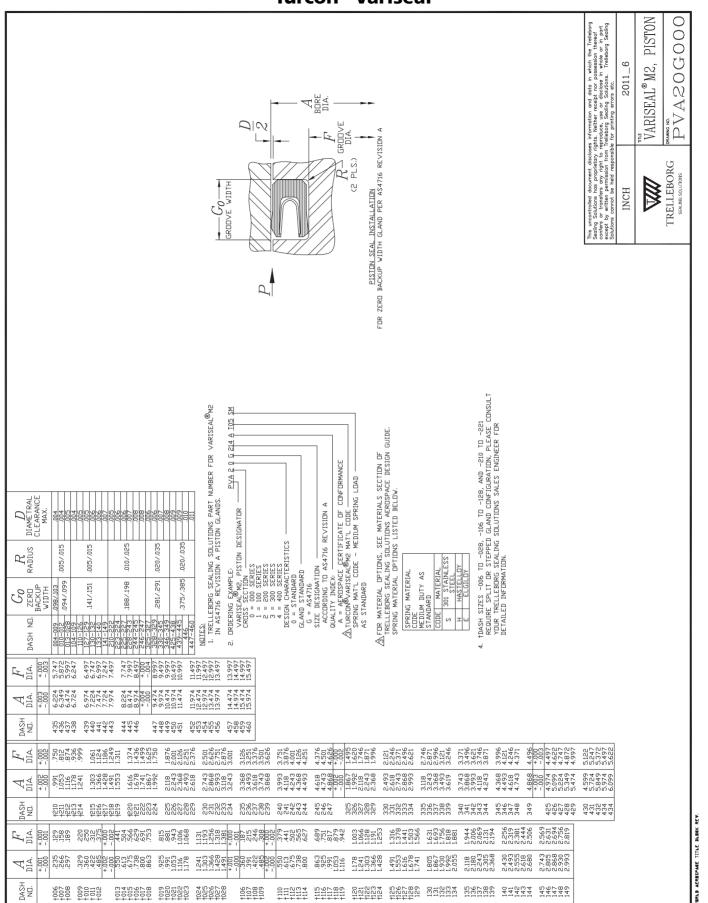


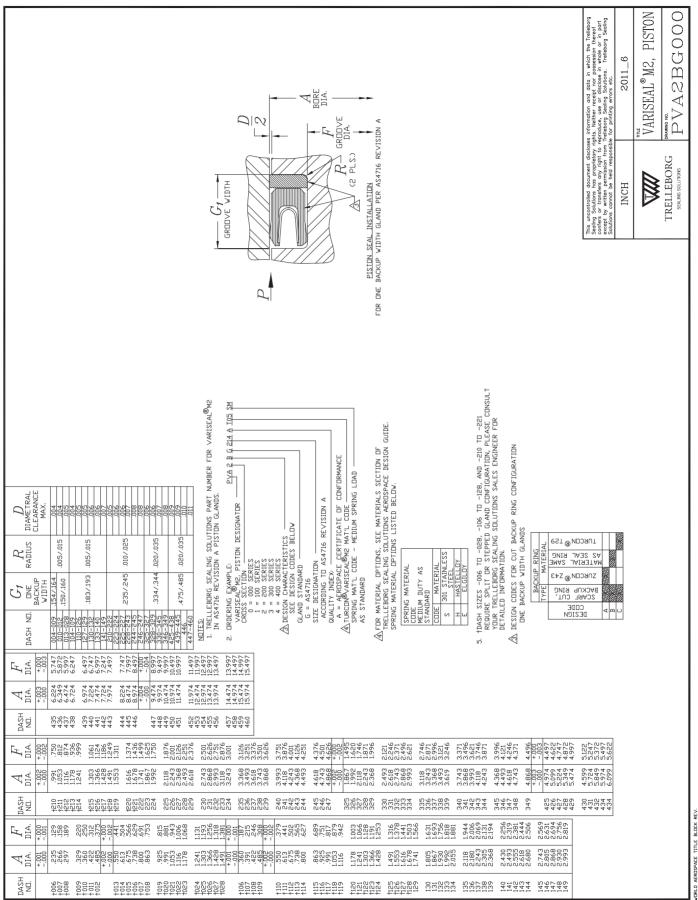


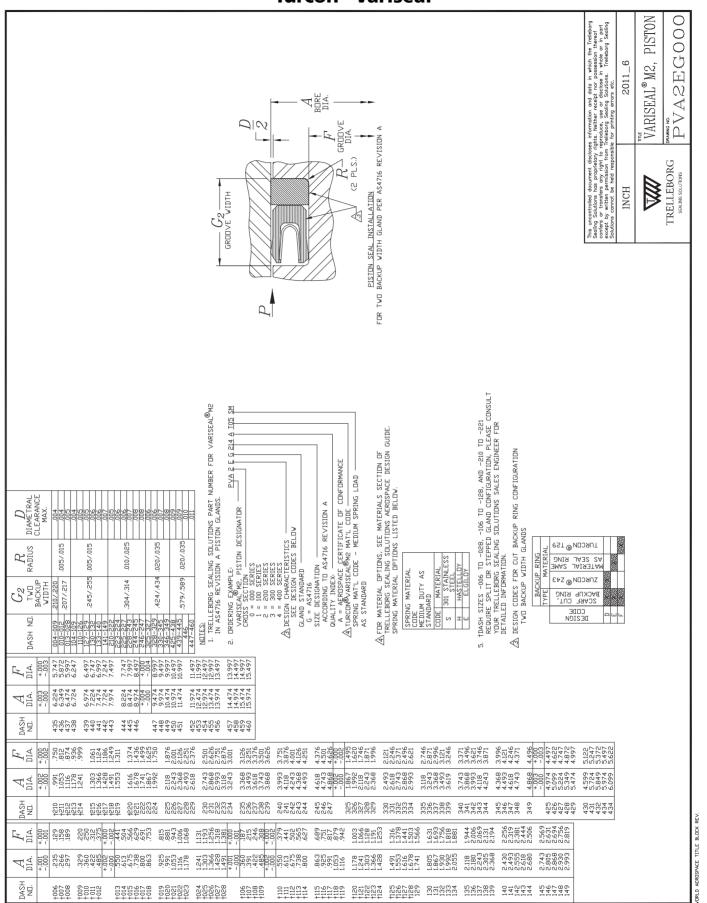


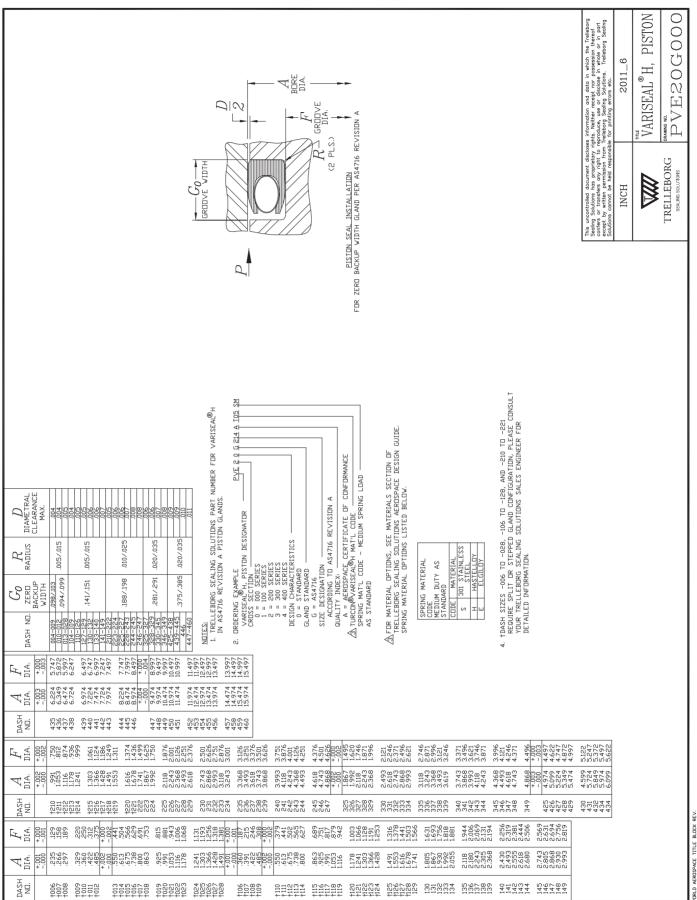


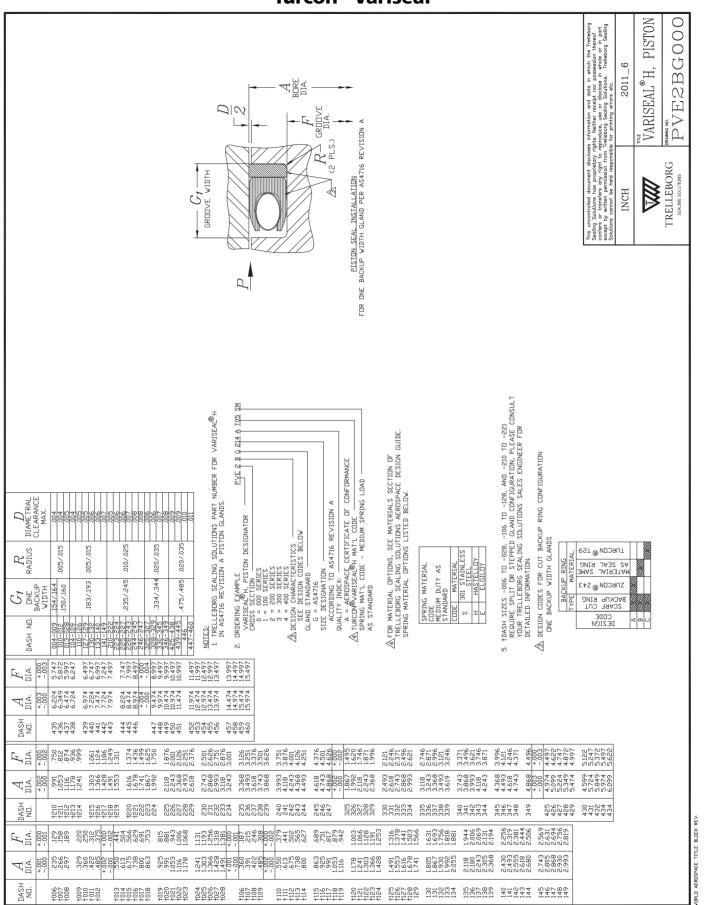


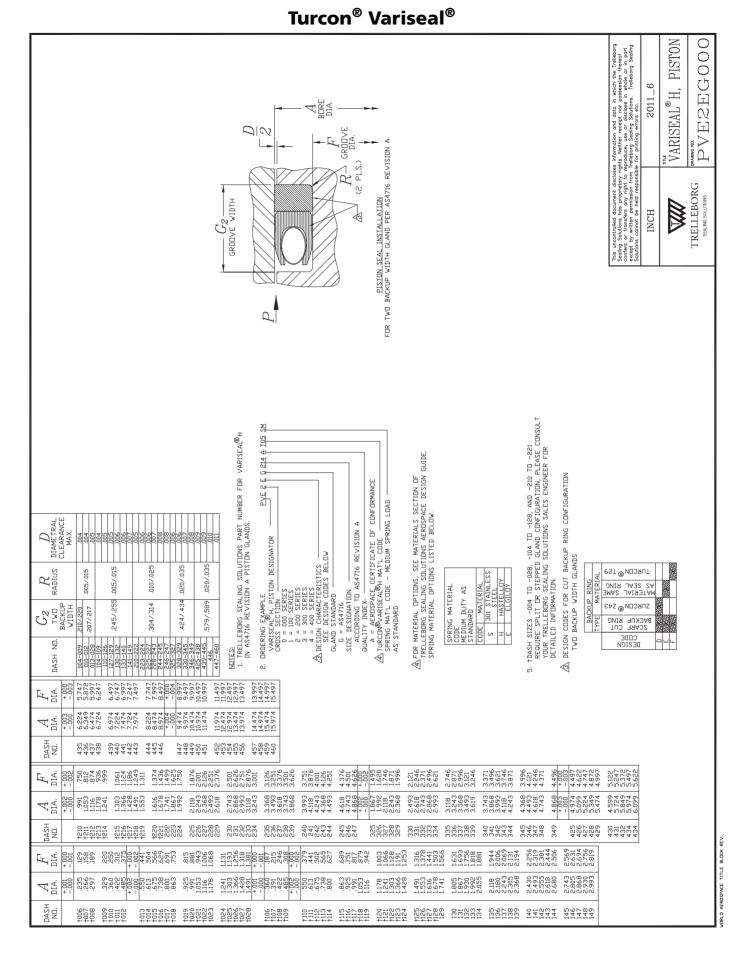












Features and benefits

- Good static and dynamic sealing effect
- Low friction, high efficiency
- Operating temperatures of -65°F to +390°F/ -54°C to +200°C
- Good chemical compatibility depending on elastomer
- Leak-tight reliable sealing performance
- High abrasion resistance
- Continuously lubricated
- Long service life
- Stick-slip-free starting
- No adhesion even after extended periods of rest
- Simple installation
- Sizes to suit all MIL-G-5514F and AS4716 glands
- If required Turcon[®] Plus Seal[®] II is interchangeable with Turcon[®] Double Delta[®] II in most applications

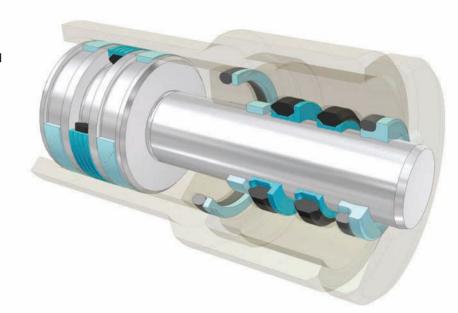


Illustration shows typical hydraulic cylinder with a sealing configuration incorporating Turcon[®] Plus Seal[®] II with and without Back-up Ring.

Description

The double-acting Turcon[®] Plus Seal[®] II is a superior slipper seal. Its contoured seal cap is formed to match a lemon-shaped elastomer ring. This allows more room for cap thickness that extends service life. Friction is reduced by activating the cap equally over its width and through the grooves in the cap. A full range of sizes is offered to suit all MIL-G-5514F and AS4716 glands and the seal is fully interchangeable with Turcon[®] Double Delta[®] II in most applications.

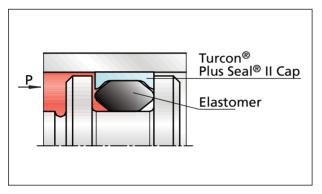


Figure 1 Turcon[®] Plus Seal[®] II

Method of Operation

The sealing effect of the Turcon[®] Plus Seal[®] II comes from the slight interference of the seal cap with the rod or bore combined with the preload from the compressed elastomer. As the pressure increases, the system pressure joins forces with the elastomer and increases the loading of the seal cap significantly. The resultant load produces a shear effect on the fluid film and provides leak-tight reliable sealing performance.

Instead of a traditional O-Ring, a proprietary lemonshaped elastomer ring is used under the Turcon[®] Plus Seal[®] II cap. This allows the cap to be thicker for increased wear life.

In addition, the elastomer element activates the seal cap over a wider axial area compared to the original slipper seal, providing a lower unit loading. See Figure 2. It also supports the corners to prevent them from sinking away from the sealing surface. This reduces the oil film under the seal to an absolute minimum. See Figure 3.

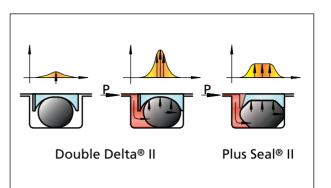


Figure 2 Pressure Distribution

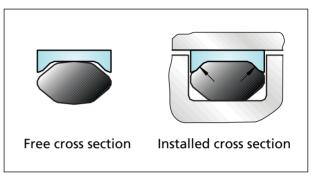


Figure 3 Turcon[®] Plus Seal[®] II Cross section

By choosing the grooved version, a further decrease in the film thickness can be achieved. The grooves increase the number of pressure peaks that the oil film must pass under. Another advantage of the grooved seal is that the grooves serve as an oil reservoir when the seal is static. When the seal starts to move dynamically, the oil film is quickly re-established under the sliding surface to lubricate the seal and maintain seal friction at a minimum. This is especially important in applications where the stroke is shorter than the seal width and it provides a general improvement in wear-life. See Figure 4.

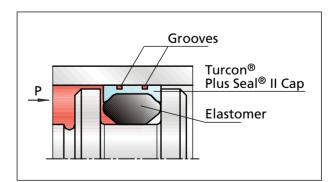
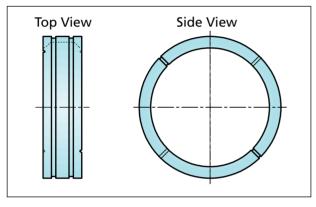



Figure 4 Grooved Turcon[®] Plus Seal[®] II

Latest information available at www.tss.trelleborg.com Edition August 2011 The zero back-up width of the seal is generally preferred, even if a wider groove is available in smaller diameters. The extra space in a wider groove is used more efficiently when filled with Back-up Rings. This increases the seal life without notably affecting the friction.

Where Turcon[®] Plus Seal[®] II is subjected bi-directional pressure, pressure from both sides alternately, it should always be equipped with sidewall notches. See Figure 5. These allow the pressure to properly activate the elastomer. See Figure 6. For piston use Turcon[®] Plus Seal[®] II is equipped with notches as standard. The rod version must be specified with notches if they are deemed necessary.

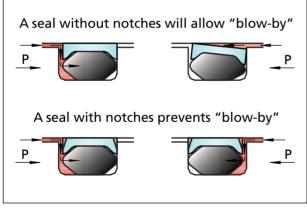
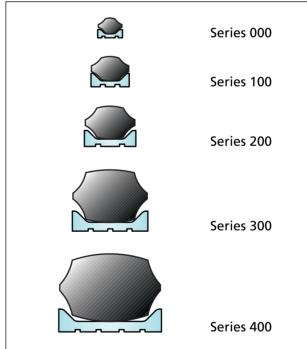


Figure 6 Turcon[®] Plus Seal[®] II II with notches, function


Using a seal without notches may allow blow-by, where the pressure shoots over the top of the Turcon[®] Plus Seal[®] II cap and forces the seal down into the groove. See SAE International document AIR 1243 for more information on this topic.

Technical Data

Operation pressure:	5,000 psi/ 35 MPa Up to 10,000 psi/ 70 MPa with Stakbak [®]
Speed:	Up to 49.2 ft/s/ 15.0 m/s
Temperature range:	-65°F to +390°F/ -54°C to +200°C depending on elastomer material
Clearance:	As per AS4716 recommendations Larger clearance possible with Stakbak®
Media:	Mineral oil-based hydraulic fluids, flame-retardant hydraulic fluids, environmentally safe hydraulic fluids (bio-oils), phosphate ester- based hydraulic oils, water and others depending on the elastomer material selected

Avoid combining extreme limits.

Turcon[®] Plus Seal[®] II Series

Relationship between Turcon[®] Plus Seal[®] II Figure 7 **Cross Sections**

Table I Turcon[®] Plus Seal[®] II Types

	Turcon [®] Plus Seal [®] II					
Seal		Width				
Туре	0 BUR (G ₀)	1 BUR (G ₁)	2 BUR (G ₂)			
Rod						
	RPB0_	RPB1_	RPB2_			
Rod With BUR	N/A	RPB1A	RPB2A			
Grooved Rod						
	RPA0_	RPA1	RPA2_			
Grooved Rod With BUR	N/A					
		RPA1A	RPA2A			
Piston						
	PPB0_	PPB1_	PPB2_			
Piston With BUR	N/A					
		PPB1A	PPB2A			
Grooved Piston						
	PPA0_	PPA1_	PPA2_			
Grooved Piston With BUR	N/A					
		PPA1A	PPA2A			

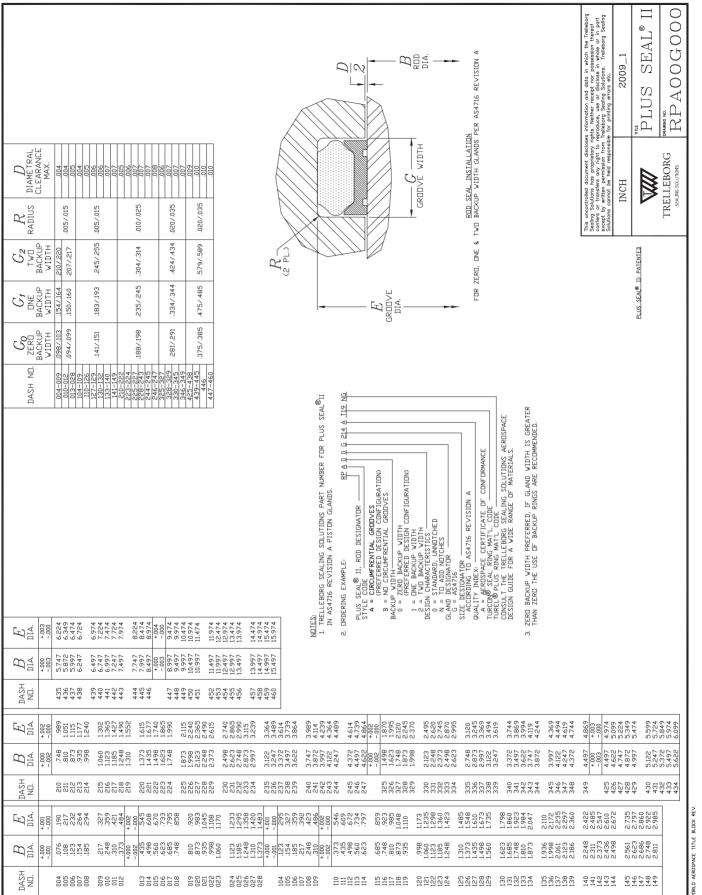
Latest information available at www.tss.trelleborg.com Edition August 2011

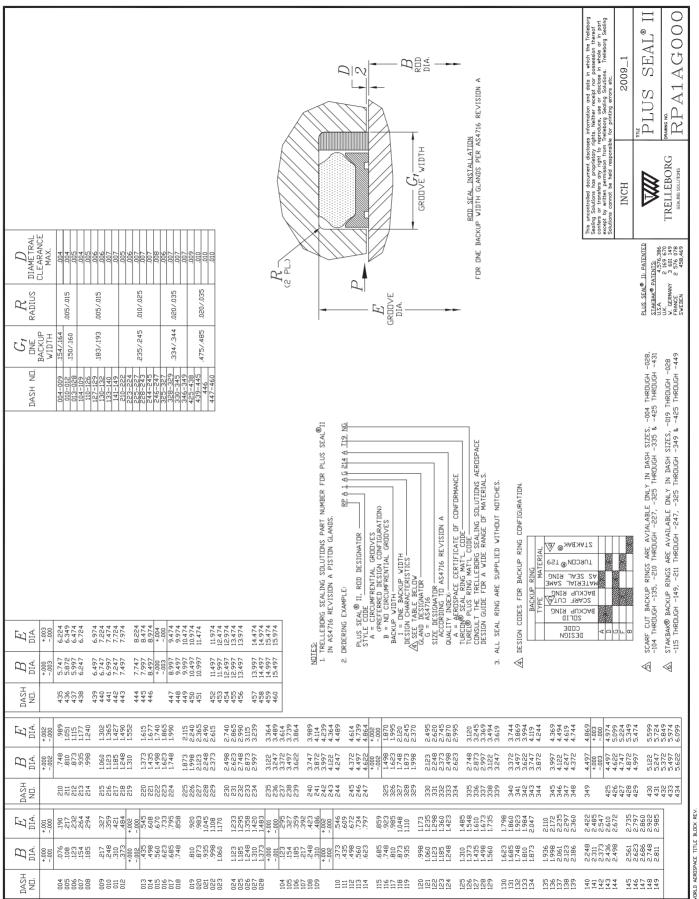
Seal	Turcon [®] Plus Seal [®] II		
Seal	Width		
Туре	0 BUR (G ₀)	1 BUR (G ₁)	2 BUR (G ₂)
Rod with Stakbak [®]	N/A		
		RPB18G	RPB28G
Grooved Rod with Stakbak [®]	N/A		
		RPA18G	RPA28G
Piston with Stakbak [®]	N/A		
		PPB18G	PPB28G
Grooved Piston with Stakbak [®]	N/A		
		PPA18G	PPA28G

Table II Turcon[®] Plus Seal[®] II Types with Stakbak[®]

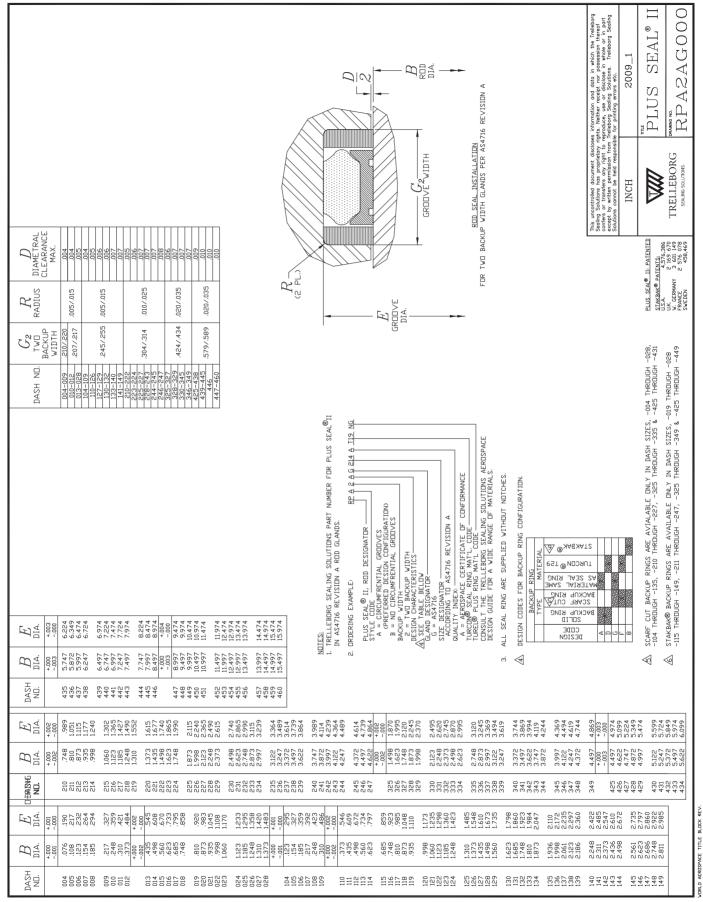
- G denotes groove width; zero, one or two back-up width

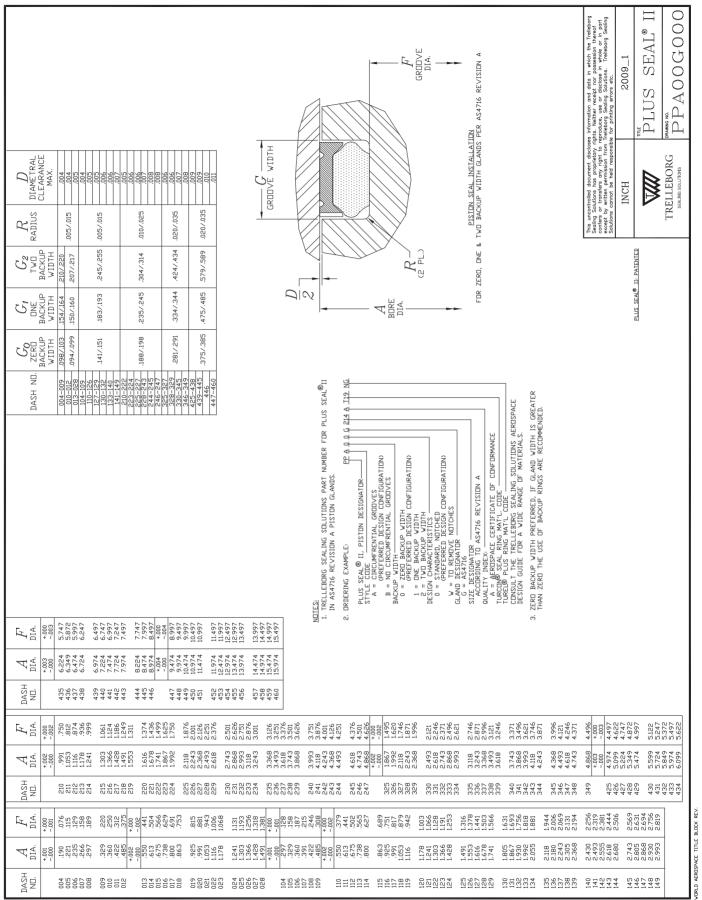
- BUR - Back-up Ring

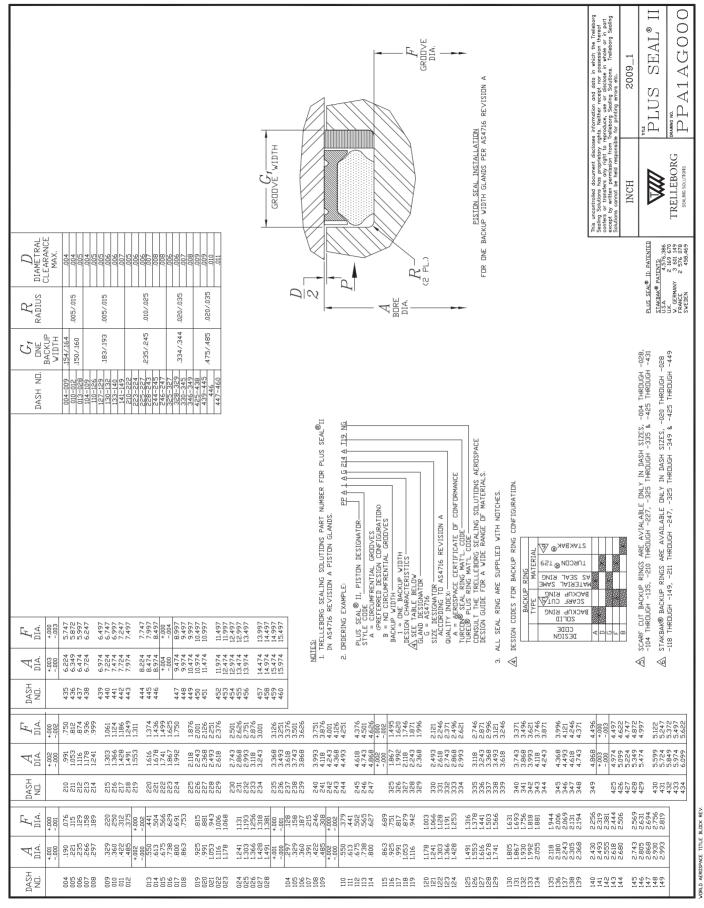

Piston seals are always delivered as standard with notch. Rod seals are always delivered without a notch. Turcon[®] Plus Seal[®] II are not available with notches in the -000 series, 0 back-up width seals. Piston seal part numbers PPB0 and PPA0 can be ordered without a notch, insert a "**W**" as the 5th digit, example PPB0**W**. Rod seal part number RPB0 and RPA0 can be ordered with a notch, insert a "**N**" as the 5th digit, example RPB0**N**.

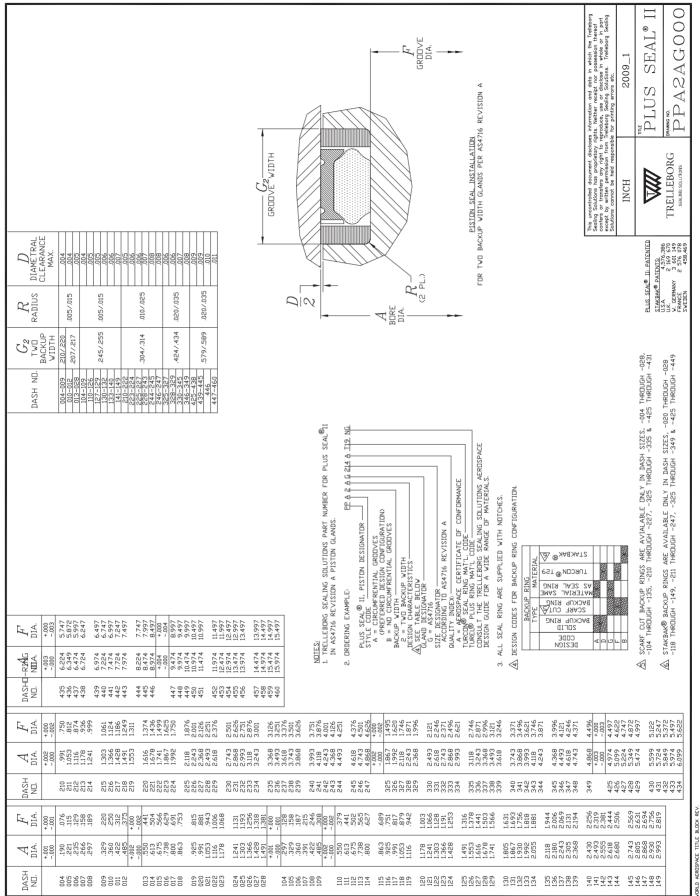

Review the individual product drawings in this catalog section for the limits on the individual part number and groove or notching feature availability.

The Plus Seal[®] II follows the series as laid out in AS4716. We recommend that the guidelines for static and dynamic sizes are followed to ensure a good service life for the seal.


Profiles in full color are recommended configurations.






110

The drawings are also available on the CD supplied with this manual or they can be downloaded from www.tss.trelleborg.com.

The drawings are also available on the CD supplied with this manual or they can be downloaded from www.tss.trelleborg.com.

Latest information available at www.tss.trelleborg.com Edition August 2011

Features and benefits

- Good static and dynamic sealing effect
- Low friction, high efficiency
- Operating temperatures of -65°F to +390°F/ -54°C to +200°C
- Good chemical compatibility depending on elastomer
- Leak-tight reliable sealing performance
- No adhesion even after extended periods of rest
- Sizes to suit all O-Ring glands including MIL-G-5514F and AS4716
- High abrasion resistance
- Continuously lubricated
- Long service life
- Stick-slip-free starting
- Simple installation

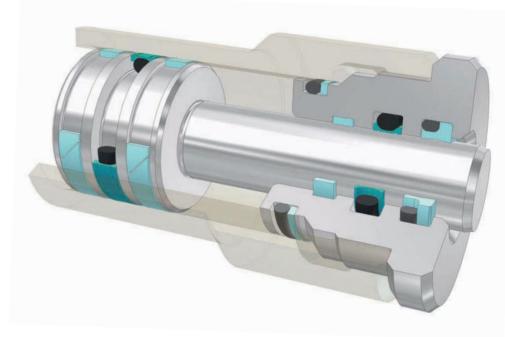


Illustration shows typical hydraulic cylinder with a sealing configuration incorporating Turcon[®] Double Delta[®] II.

Description

Turcon[®] Double Delta[®] II is the original slipper seal developed to improve the performance of O-Rings and Back-up Rings used in MIL-G-5514F and older versions of the gland standard. It is a double-acting seal energized by an elastomer O-Ring. Demonstrating good friction properties, Turcon[®] Double Delta[®] II provides stick-slip-free starting and excellent dry running. A full range of sizes is offered to suit all MIL-G-5514F and AS4716 glands along with custom designs.

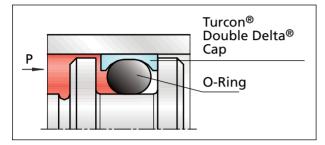


Figure 1 Turcon[®] Double Delta[®] II

Method of Operation

The O-Ring in Turcon[®] Double Delta[®] II preloads the seal cap in the thin, flexible middle section. This provides good leakage control even at low pressures.

In addition, when there is system pressure, the oil film under the seal is further reduced. Double Delta[®] II will always allow an oil film to be dragged across the sealing surface. This oil film is necessary to ensure a long service life.

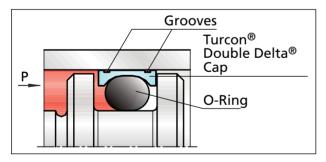
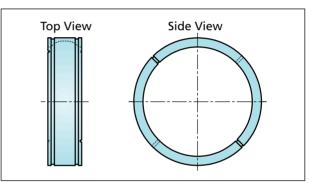


Figure 2 Grooved Turcon[®] Double Delta[®] II


By choosing the grooved version, a further decrease in the film thickness can be achieved. The grooves increase the number of pressure peaks that the oil film must pass under. Another advantage of the grooved seal is that the grooves serve as an oil reservoir when the seal is static. When the seal starts to move dynamically, the oil film is quickly re-established under the sliding surface to lubricate the seal and maintain

seal friction at a minimum. This is especially important in applications where the stroke is shorter than the seal width and it provides a general improvement in wear-life. See Figure 2.

The zero back-up width of the seal is generally preferred, even if a wider groove is available in smaller diameters. The extra space in a wider groove is used more efficiently when filled with Back-up Rings. This increases the seal life without notably affecting the friction.

Where Turcon[®] Double Delta[®] II is subjected bidirectional pressure, pressure from both sides alternately, it should always be equipped with sidewall notches. See Figure 3. These allow the pressure to properly activate the elastomer. See Figure 4. For piston use Turcon[®] Double Delta[®] II is equipped with notches as standard. The rod version must be specified with notches if they are deemed necessary.

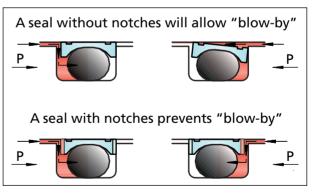


Figure 4 Turcon[®] Double Delta[®] II with notches, function

Using a seal without notches may allow blow-by, where the pressure shoots over the top of the Turcon[®] Double Delta[®] II cap and forces the seal down into the groove. See SAE International document AIR 1243 for more information on this topic.

Latest information available at www.tss.trelleborg.com Edition August 2011

Technical Data

Operation pressure: 5,000 psi/ 35 MPa

Speed:	Up to 49.2 ft/s/ 15.0 m/s
Temperature range:	-65°F to +390°F/ -54°C to +200°C depending on elastomer material
Clearance:	As per AS4716 recommendations Larger clearance possible with Stakbak®
Media:	Mineral oil-based hydraulic fluids, flame-retardant hydraulic fluids, environmentally-safe hydraulic fluids (bio-oils), phosphate ester- based hydraulic oils, water and others depending on the elastomer material selected

Avoid combining extreme limits.

Series

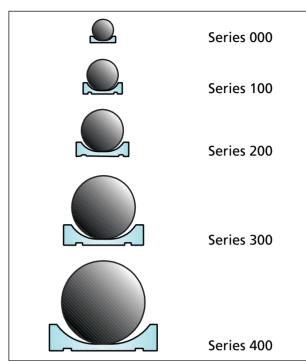


Figure 5 Relationship between Turcon[®] Double Delta[®] cross section

Table I Turcon[®] Double Delta[®] II Types

C I	Turcon [®] Double Delta [®] II		
Seal	Width		
Туре	0 BUR (G ₀)	1 BUR (G ₁)	2 BUR (G ₂)
Rod			
	RDB0_G	RDB1_G	RDB2_G
Rod with BUR	N/A		
		RDB1AG	RDB2AG
Grooved Rod			
	RDA0_G	RDA1_G	RDA2_G
Grooved Rod with BUR	N/A		
		RDA1AG	RDA2AG
Piston			
	PDB0_G	PDB1_G	PDB2_G
Piston with BUR	N/A		
		PDB1AG	PDB2AG
Grooved Piston			
	PDA0_G	PDA1_G	PDA2_G
Grooved Piston with BUR	N/A		
		PDA1AG	PDA2AG

Latest information available at www.tss.trelleborg.com Edition August 2011

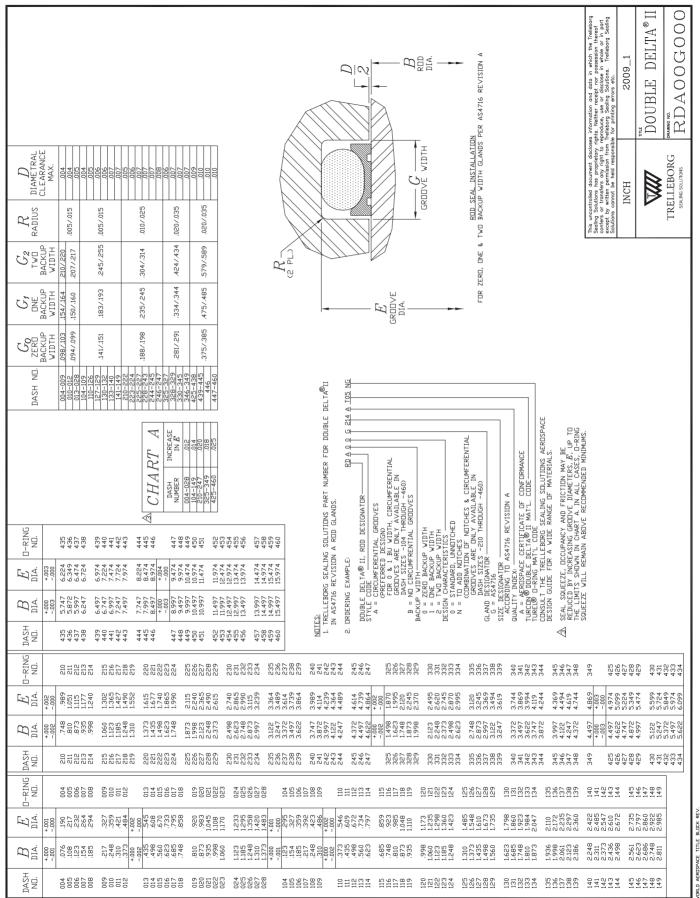
Seal	Turcon [®] Double Delta [®] II		
Sear	Width		
Туре	0 BUR (G ₀)	1 BUR (G ₁)	2 BUR (G ₂)
Rod with Stakbak [®]	N/A	RDB18G	RDB28G
Grooved Rod with Stakbak [®]	N/A	RDA18G	RDA28G
Piston with Stakbak [®]	N/A	PDB18G	PDB28G
Grooved Piston with Stakbak [®]	N/A	PDA18G	PDA28G

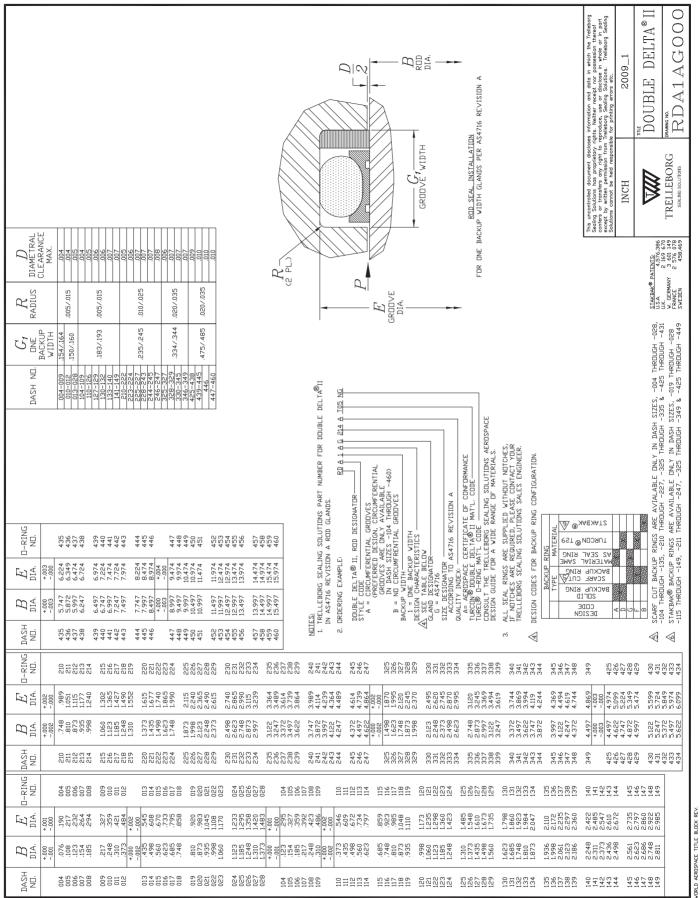
Table II Turcon[®] Double Delta[®] II Types with Stakbak[®]

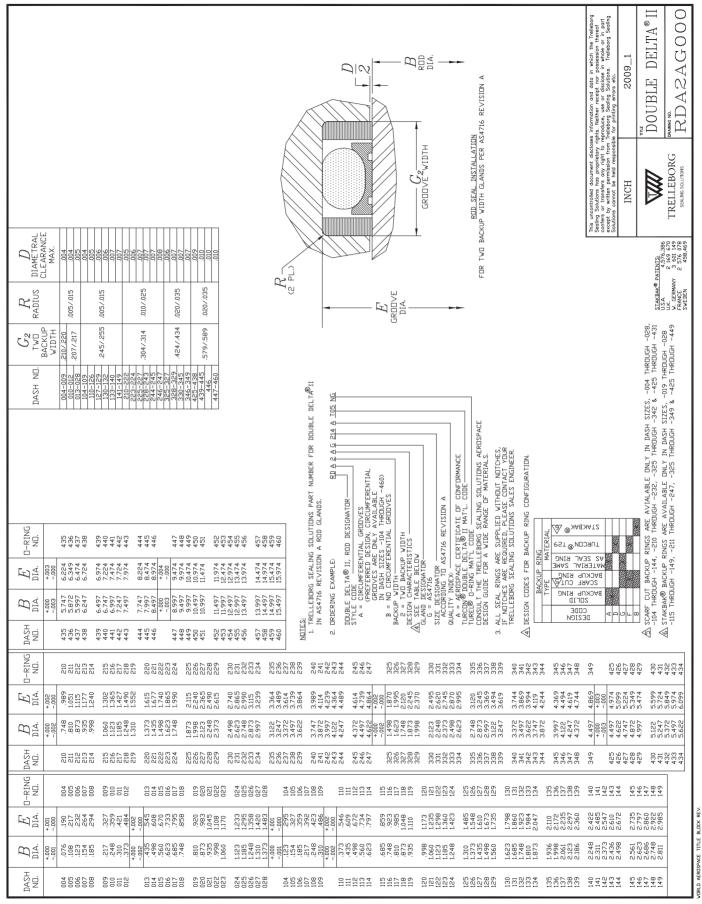
- G denotes groove width; zero, one or two back-up width

- BUR - Back-up Ring

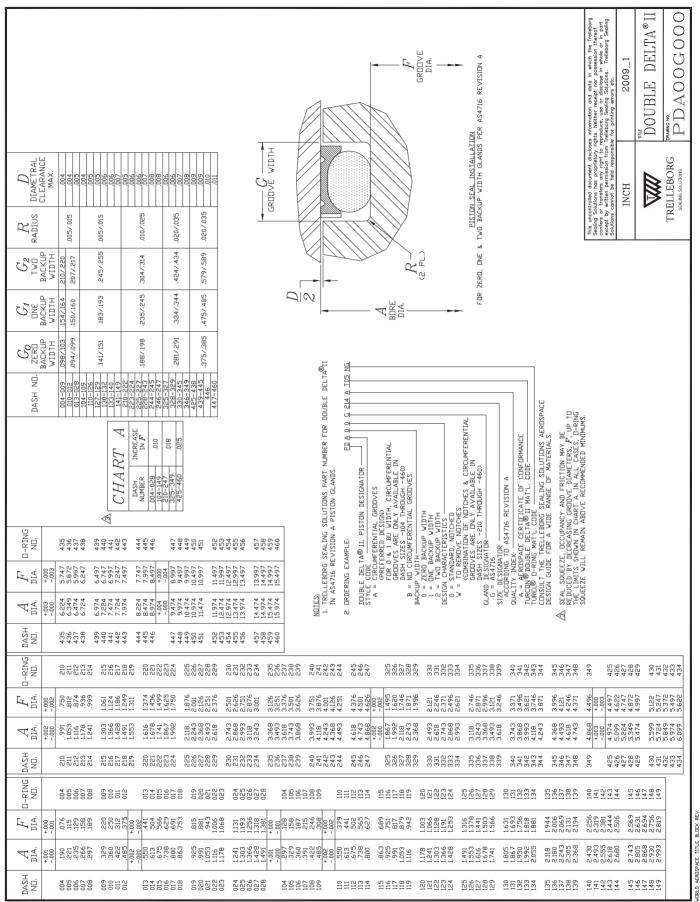
Piston seals are always delivered as standard with notch. Rod seals are always delivered without a notch.

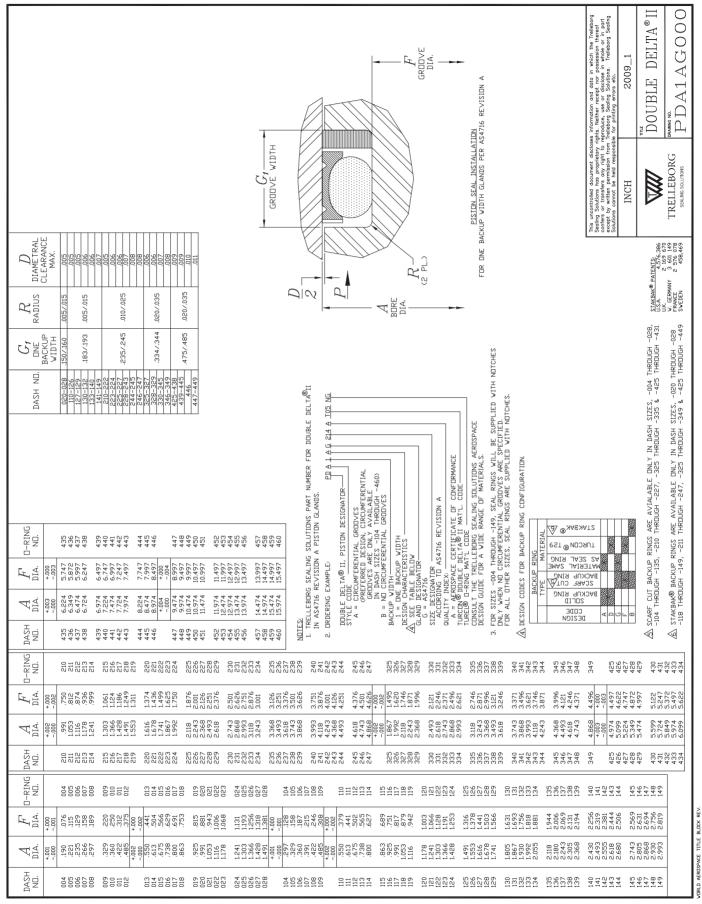

Not every Turcon[®] Double Delta[®] is available with circumferential grooves and radial notches as the cross section and available materials limit the possibilities. This is particularly true in -000 and -100 series cross sections. Please refer to the print for groove and notch availability by seal cross section.

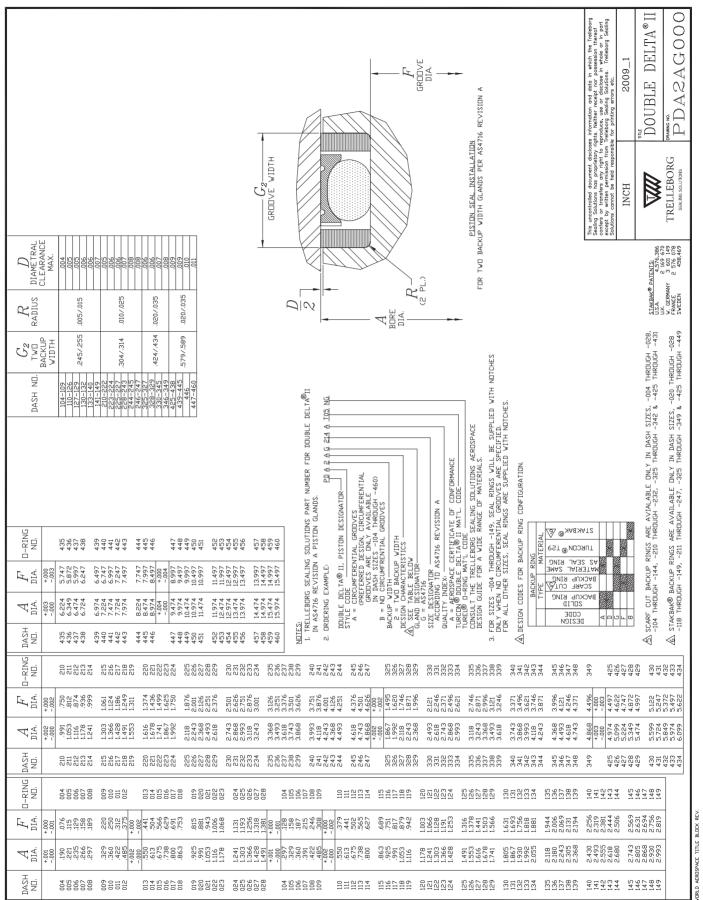

Turcon[®] Double Delta[®] II follows the series as laid out in AS4716. We recommend that the guidelines for static and dynamic sizes are followed to ensure a good service life for the seal.


Turcon[®] Double Delta[®] II is also available for British Standard B.S.4518 and any other O-Ring grooves.

Profiles in color are recommended configurations.






The drawings are also available on the CD supplied with this manual or they can be downloaded from www.tss.trelleborg.com.

123

The drawings are also available on the CD supplied with this manual or they can be downloaded from www.tss.trelleborg.com.

Latest information available at www.tss.trelleborg.com Edition August 2011

Features and benefits

- Good static and dynamic sealing effect
- Excellent stability of the elastomer element in severe working conditions
- Unidirectional version for applications where there is pressure from one side only
- Low-friction, high efficiency
- Leak-tight reliable sealing performance
- Easy installation
- Extrusion protection version operates in higher pressures and larger clearances
- Unidirectional Wedgpak[®] II gives effective fluid-film control and gas sealing in low and high-pressure systems
- Available in flash-free version upon request
- Sizes to suit AS4716 glands



Illustration shows typical hydraulic cylinder with a sealing configuration incorporating Turcon[®] Wedgpak[®] II.

Description

Turcon[®] Wedgpak[®] II consists of a proprietary triangular elastomer element supported by two delta shaped Back-up Rings. The delta-shaped Back-up Rings of Turcon[®] Wedgpak[®] II prevent the elastomer element from spiraling or rolling under severe working conditions.

Turcon[®] Wedgpak[®] II EP is a version that provides superior extrusion protection at pressures above 5,000 psi/ 35 MPa and hardware clearances larger than specified in AS4716.

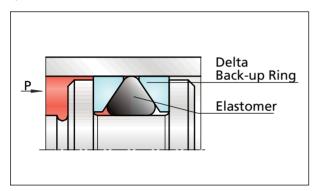


Figure 1 Turcon[®] Wedgpak[®] II

Turcon[®] Unidirectional Wedgpak[®] II consists of a delta shaped elastomer and a single delta shaped Back-up Ring. This design is used in applications with unidirectional pressure, pressure from one direction only, and provides leak-tight performance in both static and dynamic applications.

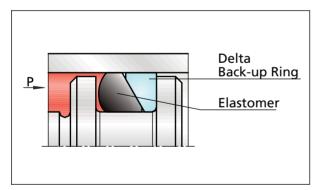


Figure 2 Turcon[®] Unidirectional Wedgpak[®] II

Method of Operation

The optimized elastomer contact area of Turcon[®] Wedgpak[®] II design results in a slipper seal-like performance with low static and dynamic friction. At the same time, the elastomer wipes the surface efficiently, providing excellent leakage control.

An outstanding load profile is the result of seal squeeze combined with the angles of the elastomer and Backup Ring in the Unidirectional Wedgpak[®] II. This gives effective fluid-film control and gas sealing in low and high-pressure systems.

Though originally designed as static seals, Turcon[®] Wedgpak[®] II and Turcon[®] Unidirectional Wedgpak[®] II are proven in dynamic applications such as aircraft utility actuators and landing gear shock struts. They are also used in gas and oil separators, both at high and low pressures as well as in various hydraulic and fueldraulic applications.

Technical Data

Operation pressure	: 5,000 psi/ 35 MPa Turcon [®] Wedgpak [®] EP can operate at higher pressures.
Speed:	Up to 9.8 ft/s/ 3.0 m/s Capable of higher speeds in non- continuous or intermittent use
Temperature range	: -65°F to +390°F/ -54°C to +200°C depending on elastomer material
Clearance:	As per AS4716 Larger clearances for Turcon [®] Wedgpak [®] EP
Media:	Mineral oil-based hydraulic fluids, flame-retardant hydraulic fluids, environmentally-safe hydraulic fluids (bio-oils), phosphate ester- based hydraulic oils, water and others depending on elastomer material selected

Avoid combining extreme limits.

Series

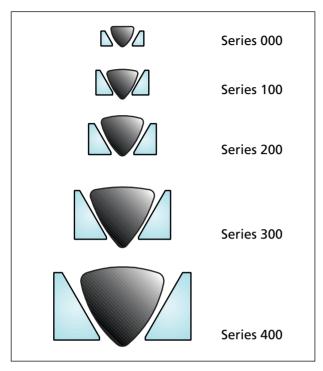
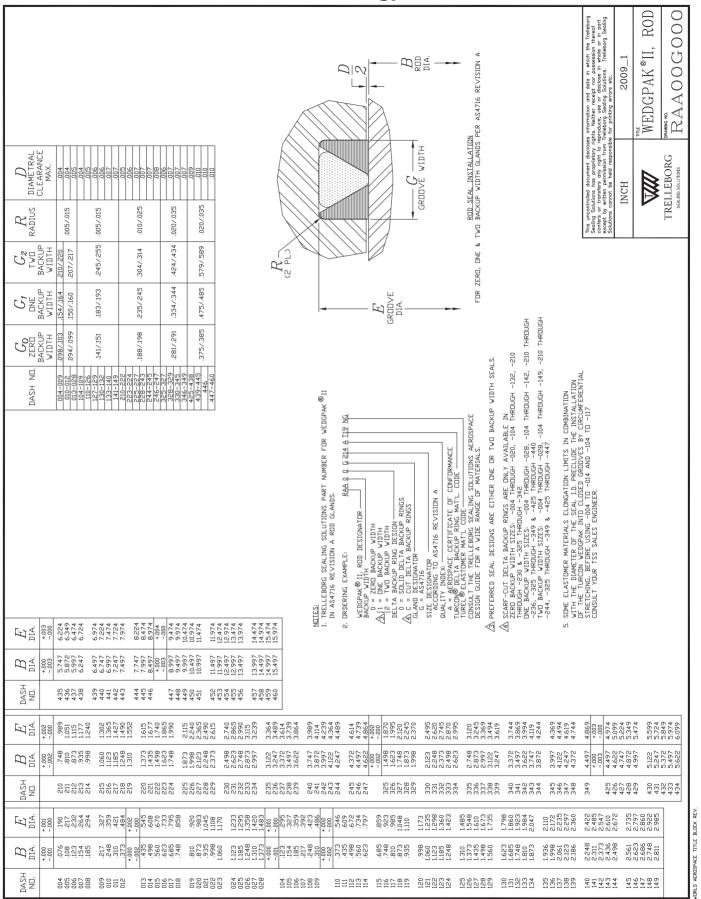


Figure 3 Relationship between Turcon[®] Wedgpak[®] II cross sections

Table I Turcon[®] Wedgpak[®] II Types

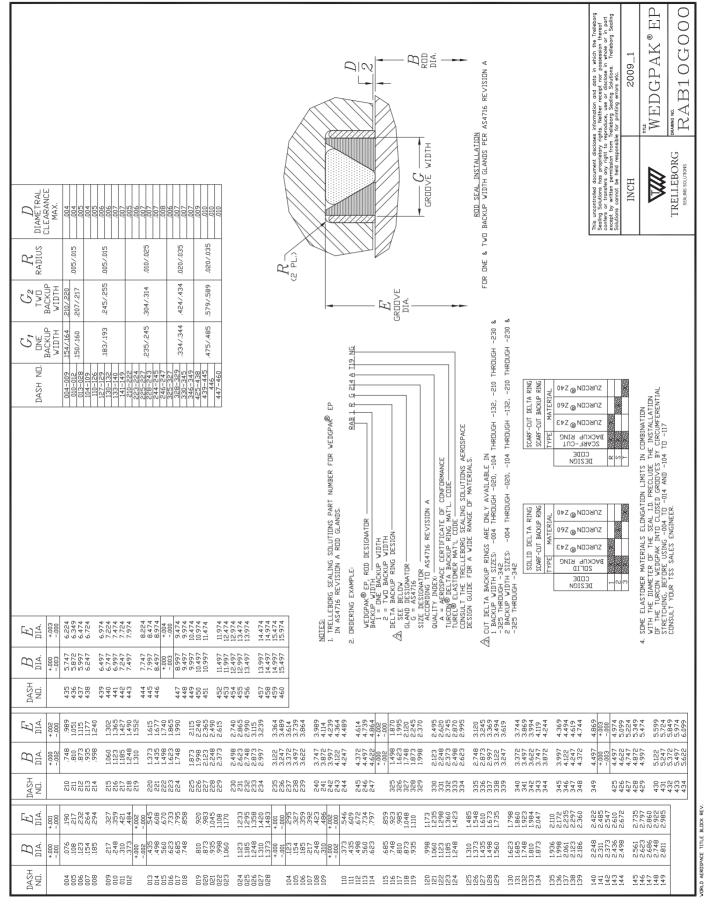
Seal	Turcon [®] Wedgpak [®] II		
Sedi	Width		
Туре	0 BUR (G ₀)	1 BUR (G ₁)	2 BUR (G ₂)
Rod			
	RAA0_G	RAA1_G	RAA2_G
Piston			
	PAA0_G	PAA1_G	PAA2_G
EP Rod	N/A		
		RAB1_G	RAB2_G
EP Piston	N/A	PAB1_G	PAB2_G
Unidirectional Rod			
	RAU0_G	RAU1_G	RAU2_G
Unidirectional Piston			
	PAU0_G	PAU1_G	PAU2_G

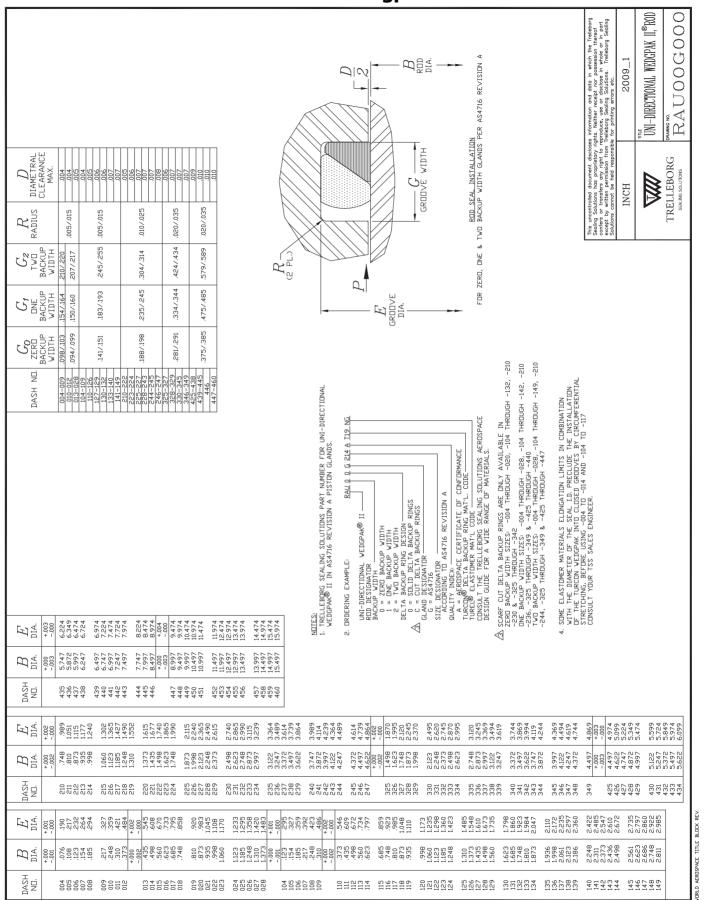

- G denotes groove width; zero, one or two Back-up width

- BUR - Back-up Ring

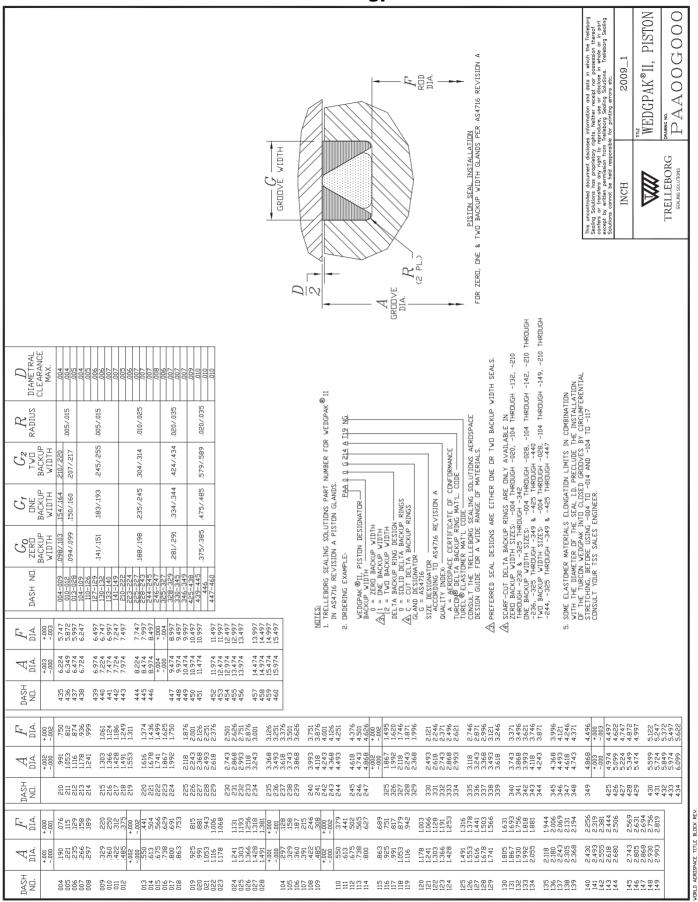
The elongation limits of some elastomer materials in combination with the diameter of the seal I.D. prevent the installation of Turcon[®] Wedgpak[®] II into closed piston (O.D.) grooves by circumferential stretching. Check the correct installation method with your Trelleborg Sealing Solutions marketing company before using Turcon[®] Wedgpak[®] II part numbers beginning with PA in dash sizes -004 to -009 and -104 to -109.

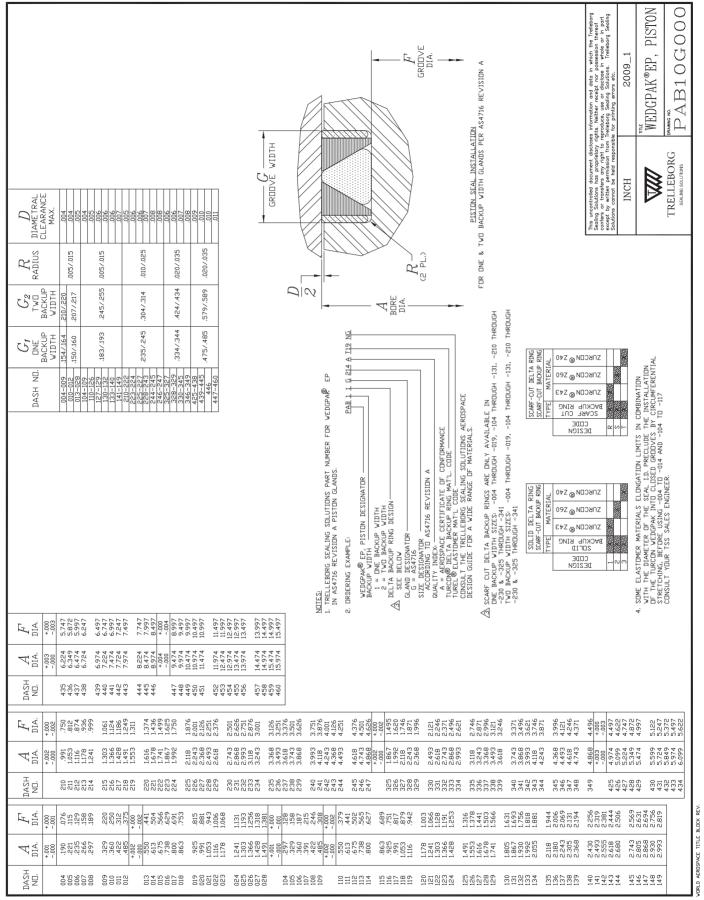
Profiles in color are recommended configurations.

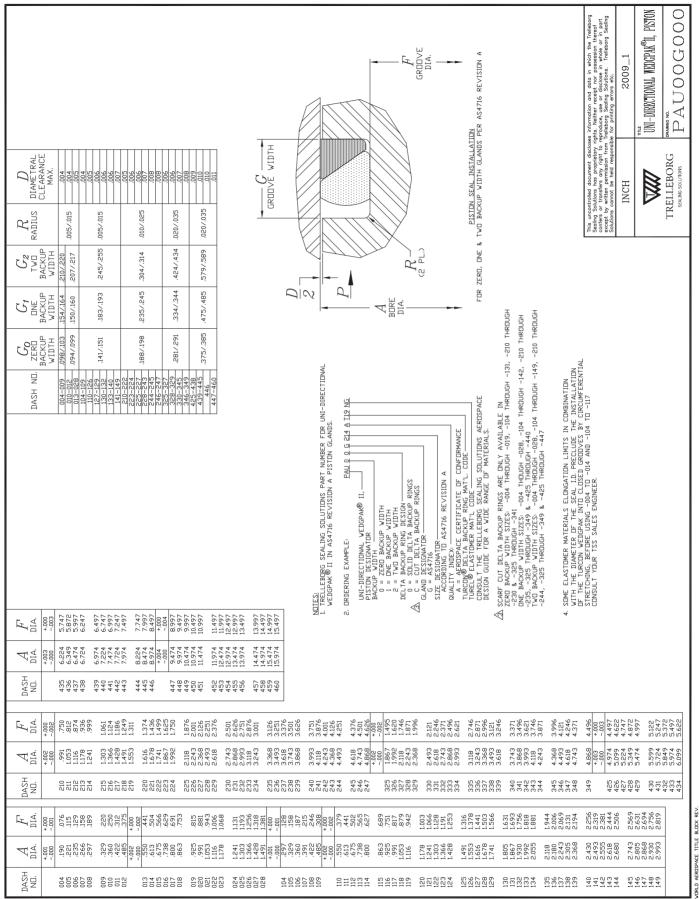




Turcon[®] Wedgpak[®] II


131





133

Features and benefits

- Good static and light-duty dynamic sealing effect
- Excellent resistance to rolling within the gland
- Excellent extrusion resistance
- Provides bidirectional sealing
- Preferred option for media separation, such as fluid/gas or fluid/fluid
- Tandem version maximizes extrusion resistance at system pressures above 5,000 psi/ 35 MPa
- Available in flash-free version
- Sizes to suit all O-Ring glands including MIL-G-5514F and AS4716
- Approved for a large number of National Stock Numbers (NSN)

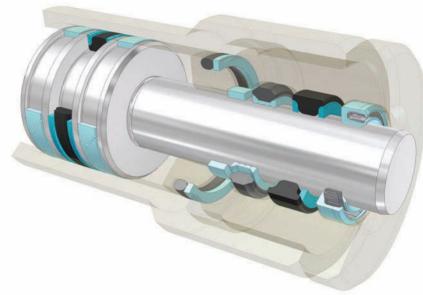


Illustration shows typical hydraulic cylinder with a sealing configuration incorporating Turcon[®] T-Seal.

Seals/Back-up Rings for AS4716

Latest information available at www.tss.trelleborg.com Edition August 2011

Description

Turcon[®] T-Seal consists of a T-shaped elastomer sealing element supported by Turcon[®] Back-up Rings on both sides. This combination results in a stable seal, the semicircular lip configuration ensuring positive sealing. The side flanges, which form the seal's base offer excellent resistance to rolling and act as an effective platform to position and energize the anti-extrusion rings.

Turcon[®] T-Seal is ideal for light applications, both as a rod or piston seal, where they provide long-life, maximized leakage control and excellent extrusion protection.

A full range of sizes is offered to suit all MIL-G-5514F and AS4716 glands.

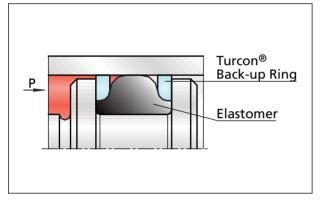


Figure 1 Turcon[®] T-Seal

Method of Operation

Due to its large elastomer footprint Turcon[®] T-Seal is a good static seal with high reliability. Providing bidirectional sealing, it is the preferred option for media separation, such as fluid/gas or fluid/fluid.

The one or two Back-up Ring widths offer especially good protection against extrusion. This is due to the additional material volume of the Back-up Rings compared to zero Back-up Ring widths.

An alternative is Tandem Turcon[®] T-Seal. This utilizes a co-modulus Back-up Ring design to prevent abrasion of the elastomer component. It maximizes extrusion resistance of the sealing assembly at system pressures above 5,000 psi/ 35 MPa. This is even the case in application conditions where optimum seal performance is difficult, such as large hardware clearances. The inner anti-abrasion ring is usually made from softer Turcon[®] T01 or virgin PTFE, while the outer anti-extrusion ring is made from a high modulus material like polyimide or PEEK™.

Technical Data

Operation pressure:	5,000 psi/ 35 MPa static 3,000 psi/ 21 MPa dynamic
Speed:	9.8 ft/s/ 3.0 m/s or higher for non- continuous or intermittent use
Temperature range:	-65°F to +390°F/ -54°C to +200°C depending on elastomer
Clearance:	As per AS4716 Larger with tandem Back-up Ring configuration
Media:	Mineral oil-based hydraulic fluids, flame-retardant hydraulic fluids, environmentally-safe hydraulic fluids (bio-oils), phosphate ester- based hydraulic oils, water and others depending on the elastomer material selected

Avoid combining extreme limits.

Series

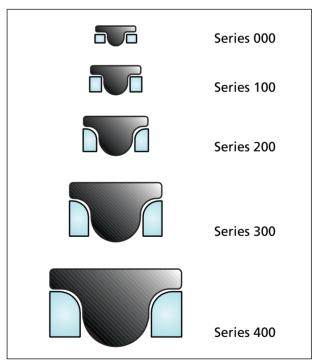
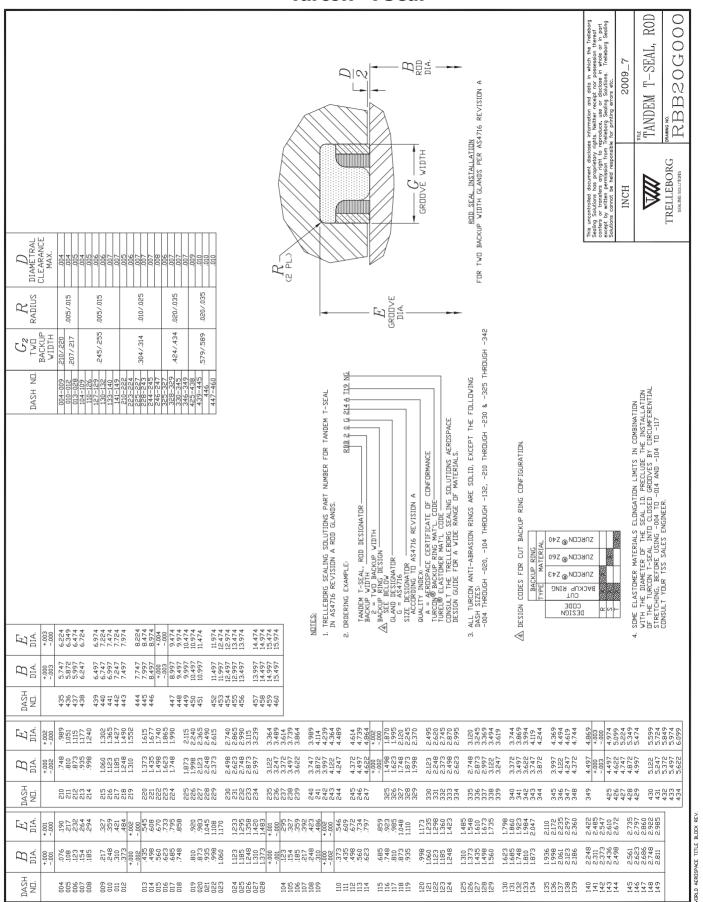


Figure 2 Relative Size of Turcon[®] T-Seal cross section

Table I Turcon[®] T-Seal Types

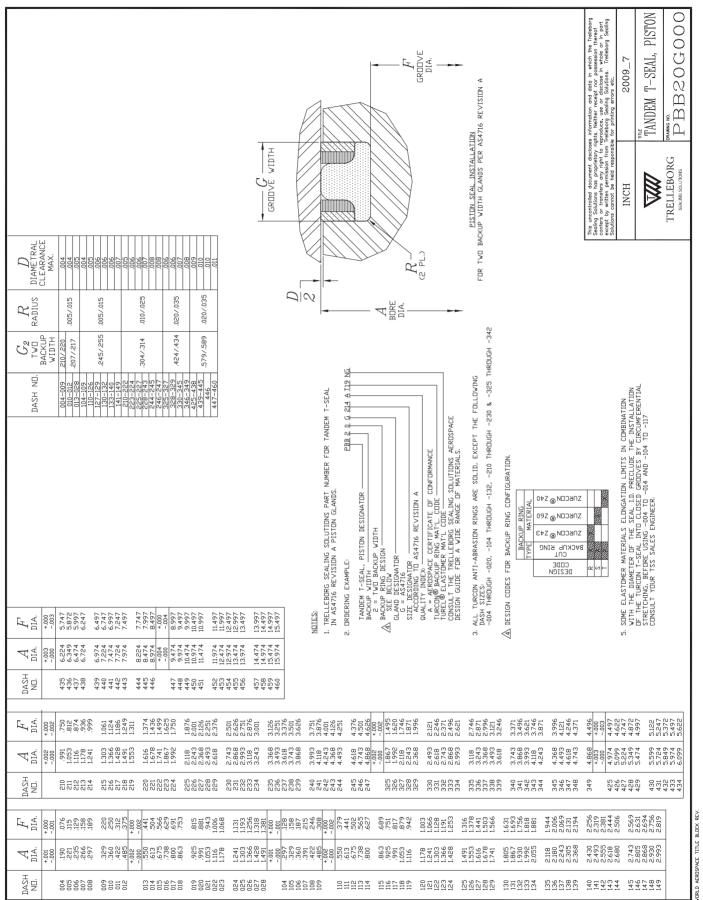
Seal	Turcon [®] T-Seal		
	Width		
Туре	0 BUR (G0)	1 BUR (G1)	2 BUR (G2)
Rod with BUR AS4716 Rev. A			
	RBA0_G	RBA1_G	RBA2_G
Piston with BUR AS4716 Rev. A			
	PBA0_G	PBA1_G	PBA2_G
Rod with BUR			
MIL-G-5514 F	RB10_M (old p/n \$38410)	RB11_M (old p/n S38411)	RB12_M (old p/n S38412)
Piston with BUR			
MIL-G-5514 F	PB20_M (old p/n S38420)	PB21_M (old p/n S38421)	PB22_M (old p/n S38422)
Tandem (Staged) Rod	N/A	N/A	RBB2_G
Tandem (Staged) Piston	N/A	N/A	PBB2_G

- G denotes groove width; zero, one or two back-up width


- BUR - Back-up Ring

The elongation limits of some elastomer materials in combination with the diameter of the seal I.D. prevent the installation of Turcon[®] T-Seal into closed piston (O.D.) grooves by circumferential stretching. Check the correct installation method with your Trelleborg Sealing Solutions marketing company before using Turcon[®] T-Seal part numbers beginning with PB in dash sizes -004 to -009 and -104 to -109.

Profiles in color are recommended configurations.


Pick AS4716 REVISION A Reference of data in which the Trainboard	and the second of the second o
	and an support and
DASH NIC. Construction of the construction of	
P DASH ND DASH ND DASH ND <th></th>	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c} E \\ E $	+,000 -,000 -,000 5,099 5,349 5,349 5,599 5,599 5,599 6,099 6,099
	+000 -003 -003 +4747 4.747 4.7472 4.977 4.977 5.122 5.122 5.122 5.122 5.122 5.122 5.122 5.122 5.122 5.122 5.122 5.122 5.122 5.122
DASH DASH NG-H NG-H NG-H NG-H NG-H NG-H NG-H NG-	
	Control Contro Control Control Control Control Control Control Control Control Co
	141 2.231 2.4855 142 2.373 2.495 2.5455 144 2.2498 2.567 2.5735 145 2.566 2.7335 146 2.566 2.7335 147 2.6666 2.7335 149 2.811 2.985 149 2.811 2.985 149 2.811 2.985

The drawings are also available on the CD supplied with this manual or they can be downloaded from www.tss.trelleborg.com.

141

Cr Cr Cr Cr ORUTH AUXIN IDAFTRAL VUINT AUXIN IDAFTRAL VINT AUXIN IDAFTRAL VINT AUXIN IDAFTRAL ISO/193 245/25 JOS/015 IDAFTRAL ISO/193 245/25 JOS/015 IDAFTRAL ISO/193 245/25 JOS/015 IDAFTRAL ISO/193 245/25 JOS/015 IDAFTRAL ISO/194 245/25 JOS/015 IDAFTRAL ISO/194 245/25 JOS/015 IDAFTRAL ISO/104 260/013 IDO/015 IDAFTRAL
Mark Mark Mark Mark Image: State of the state of th
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

143

Seals/Back-up Rings for AS4716

Latest information available at www.tss.trelleborg.com Edition August 2011

Features and benefits

- Combines the benefits of a low-friction Turcon[®] slipper seal with the high sealing characteristics of an elastomer seal
- High sealing effect in applications requiring media separation, fluid/fluid or fluid/gas
- Optimized leakage rate
- Low gas permeation rate
- Capable of operating successfully at higher pressures and sliding speeds than $\mathsf{Turcon}^{\textcircled{B}}$ T-Seal
- Outstanding sliding properties, no stick-slip effect
- Designed for zero Back-up Ring width groove per AS4716

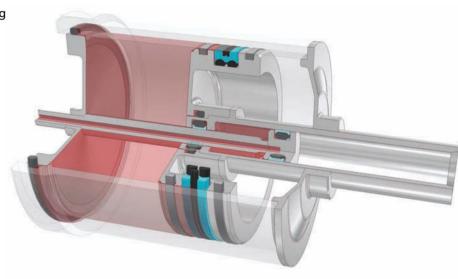


Illustration shows typical hydro-pneumatic accumulator with a sealing configuration incorporating Turcon® AQ-Seal® 5.

Description

Turcon[®] AQ-Seal[®] 5 is a double-acting piston seal designed for reciprocating or helical movements. It consists of a dynamic Turcon[®] sealing element into which an elastomer Turel[®] X-Ring, with a limited footprint, is inset centrally. The assembly is energized by two elastomer O-Rings. Turcon[®] AQ Seal[®] 5 is highly recommended for applications requiring media separation in extremely dynamic situations, such as in shock absorbers.

A range of sizes in the 300 and 400 series are offered to suit MIL-G-5514F and AS4716 bores. Custom designs are also available.

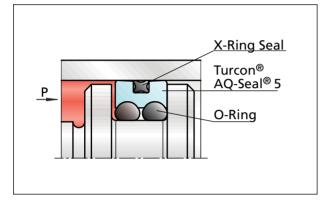


Figure 1 Turcon[®] AQ-Seal[®] 5

Method of Operation

Turcon[®] AQ-Seal[®] 5 combines the benefits of a lowfriction Turcon[®] slipper seal with the high sealing characteristics of an elastomer seal. It does this by incorporating a limited footprint Turel[®] X-Ring in the dynamic sealing face, optimizing leakage control, while minimizing friction.

The unique characteristics of Turcon[®] AQ-Seal[®] 5 are its special seal profile with a defined seal edge and the use of two elastomer O-Rings as energizing elements to optimize its pressure profile.

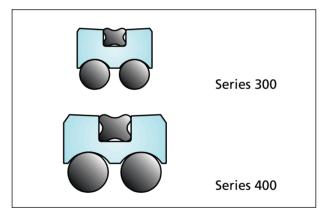
Technical Data

Operation pressure: 5,000 psi/ 35 MPa

Speed:	9.8 ft/s/ 3.0 m/s Capable of higher speeds with non-continuous or intermittent use
Temperature range:	-65°F to +390°F/ -54°C to +200°C depending on elastomer
Clearance:	As per AS4716 Larger using custom corner- reinforced configuration
Media:	Mineral oil-based hydraulic fluids, flame-retardant hydraulic fluids, environmentally-safe hydraulic fluids (bio-oils), phosphate ester- based hydraulic oils, water and others depending on the elastomer material selected

Avoid combining extreme limits.

Series



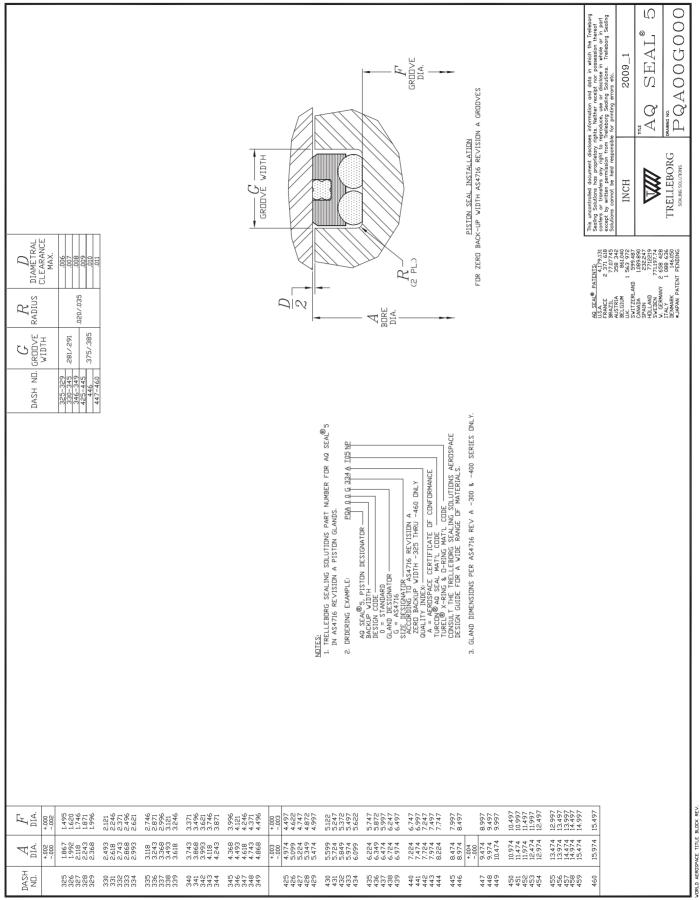

Figure 2 Relative size of Turcon[®] AQ-Seal[®] 5 cross section

Table I Turcon[®] AQ-Seal[®] 5 Types

Cross Section	Description	Part Number	Gland Standard
	Turcon [®] AQ-Seal [®] 5	PQA00G3	AS4716 300 Series Glands
	Turcon [®] AQ-Seal [®] 5	PQA00G4	AS4716 400 Series Glands

Profiles in color are recommended configurations.

Š

Features and benefits

- Prevents O-Ring extrusion
- Prolongs O-Ring service life
- Allows O-Rings to be utilized in higher pressure applications, against softer mating surfaces and where there are reciprocating or rotating movements
- Compatible with virtually all media and gases
- Easy Installation
- Wide range of geometries to meet the needs of all applications
- Sizes to meet all standards
- Non-standard sizes also available



Illustration shows typical hydraulic cylinder with Back-up Rings and O-Rings.

Description

During the 1950s Trelleborg Sealing Solutions developed the Back-up Ring as an improvement on leather packing rings.

Back-up Rings are protective and supporting elements with no sealing function. Made from extrusion-resistant materials such as Turcon[®], they usually have a rectangular cross section and are installed in a groove with an elastomer O-Ring. Due to their tight fit in the housing, Back-up Rings prevent extrusion of the pressurized elastomer sealing element into the sealing gap.

Using Back-up Rings allows O-Rings to be utilized in higher pressure applications, against softer mating surfaces and where there are reciprocating or rotating movements. They also compensate for radial sealing gaps and large temperature fluctuations.

The wide range of Back-up Rings offered meets all aerospace industry standards.

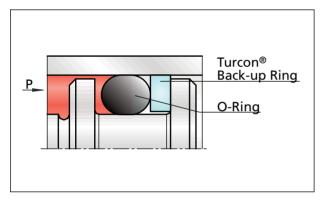


Figure 1 Turcon[®] Back-up Ring

Stakbak[®] is a dual modulus bonded stacked Back-up Ring. It consists of one ring made of Turcon[®], which protects the O-Ring, and a second ring in HiMod[®] / Zurcon[®] to prevent extrusion. Easy to install, the Stakbak[®] is capable of operating at higher pressures than a standard Back-up Ring.

Method of Operation

The Back-up Ring is installed between the O-Ring and the groove wall, separating the O-Ring from the clearance gap.

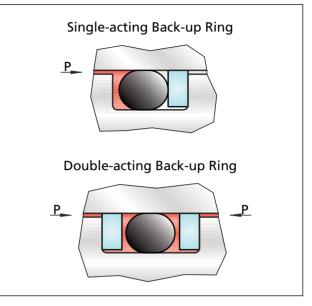


Figure 2 Single-acting and double-acting sealing configurations with Back-up Rings

Technical Data

Operating pressure:

- 3,000 psi/ 21 MPa for standard design in Turcon[®] T01 or Turcon T28 per AMS8791
- 5,000 psi/ 35 MPa for standard design in Turcon[®] with fillers, Turcon[®] T11 carbon and graphite-filled PTFE
- 8,000 psi/ 55 Mpa for special versions such as ${\rm Stakbak}^{\circledast}$

Speed:	49.2 ft/s/ 15 m/s
Temperature range:	-94°F to +390°F/ -70°C to +200°C
Clearance:	As per Mil-G-5514, AS4716 or AS5857
Media:	Compatible with virtually all media and gases

Materials

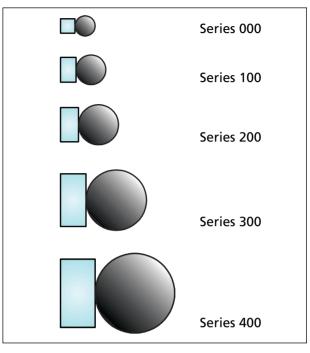
Standard material for Back-up Rings is Turcon[®] T01, Virgin PTFE. Stronger materials are available for specific applications.

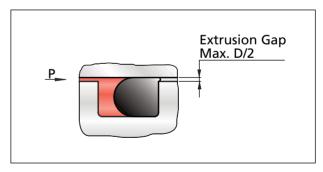
Series

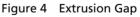
Back-up Rings follow the series according to aerospace seal gland standard AS4716 Revision A and static seal gland standard AS5857. These guidelines should be followed to ensure good service life. Part numbers for Trelleborg Sealing Solutions Back-up Rings correlate to aerospace gland standards as indicated by the sixth digit.

Part No 6 th Digit	Description			
M	Mil-P-5514 and Mil-G-5514F-Aerospace Hydraulic Packing Gland Standard, Static and Dynamic.			
M	Mil-G-5514F Back-up Rings can be used in the AS4716 Rev. A glands in -300 and 400 series glands only.			
G	AS4716 Revision A, Aerospace Hydraulic Packing Gland Standard, Static and Dynamic			
E	AS5857, Aerospace Static Gland Standard			

Back-up Rings can also be supplied in non-standard diameter sizes.




Figure 3 Relative Size of Back-up Ring cross section


Ordering

O-Ring must be ordered separately from Back-up Ring.

Guidelines for Gap, Pressure and Size

Back-up Rings must be used if the pressures given in the tables below are exceeded.

Series	O-Ring Cross Section	Extrusion Gap D inch mm			
Series	inch	500 psi	1,000 psi	1,500 psi	
	mm	3.5 Mpa	7 Mpa	10.5 Mpa	
000	0.070	0.006	0.004	0.002	
	1.78	0.15	0.10	0.05	
100	0.103	0.007	0.005	0.003	
	2.62	0.18	0.13	0.08	
200	0.139	0.008	0.006	0.004	
	3.53	0.20	0.15	0.10	
300	0.210	0.010	0.007	0.005	
	5.33	0.25	0.18	0.13	
400	0.276	0.012	0.008	0.006	
	7.00	0.30	0.20	0.15	

Table I Extrusion Gap Size D for 70 Shore Hardness

Table II Extrusion Gap Size D for 80 Shore Hardness

Series	O-Ring Cross Section	mm				
Jenes	inch	500 psi	1,000 psi	1,500 psi	2,000 psi	2,500 psi
	mm	3.5 Mpa	7 Mpa	10.5 Mpa	14 Mpa	17.5 Mpa
000	0.070	0.008	0.006	0.004	0.002	0.001
	1.78	0.20	0.15	0.10	0.05	0.03
100	0.103	0.010	0.007	0.005	0.003	0.002
	2.62	0.25	0.18	0.13	0.08	0.04
200	0.139	0.012	0.008	0.006	0.004	0.002
	3.53	0.30	0.20	0.15	0.10	0.05
300	0.210	0.014	0.010	0.007	0.005	0.002
	5,33	0.35	0.25	0.18	0.13	0.06
400	0.276	0.016	0.012	0.008	0.006	0.003
	7,00	0.40	0.30	0.20	0.15	0.07

Cross section	Description	Part Number (Old part number)	Aerospace, military or Boeing part number	Gland standard
	Heavy duty Spiral Rod or piston seal (see Note 1)	BM820S (S38030)	MS28782	Mil-P-5514 Revisions A, B, C, D, E one or two BUR widths
	Heavy duty Solid Rod or piston seal	BUS00M* (S13050)		Mil-P-5514 Revisions C, D, E one or two BUR widths
	Heavy duty single turn Rod or piston seal (see Note 1)	BM740M (S38029)	MS28774	Mil-P-5514 thru Mil-G-5514 All revisions one or two BUR widths
	Heavy-duty single turn Scarf-cut Rod or piston seal	BGS20M* (S13122)		Mil-P-5514 thru Mil-G-5514 All revisions one or two BUR widths
	Heavy-duty spiral turn Scarf-cut Rod or piston seal	BP170M* (S12517)		Mil- P-5514 Revisions C, D, E fractional one or two BUR widths
	Heavy-duty single turn Rod or piston seal	BU870M* (S12587)		Mil-P-5514 Revisions A, B, C, D, E one or two BUR widths
	Heavy-duty single turn Scarf-cut Rod or piston seal	BG660M* (S12766)		Mil-P-5514 Revisions D, E one or two BUR widths
	Delta Solid Piston seal	 (S11243)* (S33824 is recommended)	LS4652	Mil-P-5514 Revisions C, D, E one or two BUR widths
	Delta Solid Rod seal	 (S11242)* (S33823 is recommended)	LS4652	Mil-P-5514 Revisions C, D, E one or two BUR widths
	Delta Solid Piston seal	 (\$33278)*		Mil-P-5514 Revisions C, D, E one or two BUR widths
	Delta Solid Rod seal	(\$33277)*		Mil-P-5514 Revisions C, D, E one or two BUR widths

Table III Back-up Ring Types: Industry Standards Mil-P-5514 and Mil-G-5514

BU*** = Back-up Ring Uncut (Solid); BV*** = Back-up Ring Uncut (Solid); BG*** = Back-up Ring Scarf Cut; BH*** = Back-up Ring Scarf Cut; BP*** = Back-up Ring Spiral type

BUR – Back-up Ring

* The part number is for one ring only. Two rings should be ordered to form a set.

Back-up Ring Material Notes:

¹⁾ Mil-spec and BAC Backup Rings available in only AMS-R-8791 material, TSS Turcon T28 only

Cross section	Description	Part Number (Old part number)	Aerospace, military or Boeing part number	Gland standard
	Delta Solid Piston seal	BU440M* (S33824)		Mil-G-5514 Revision F one or two BUR widths
	Delta Solid Rod seal	BU230M* (S33823)		Mil-G-5514 Revision F one or two BUR widths
	Heavy-duty single turn Solid or scarf-cut Rod or piston seal	BUS70M* Uncut BGS70M* Cut (S33157)		Mil-G-5514 Revision F
	Heavy-duty single turn Solid or scarf-cut Rod or piston seal	BUS10M Uncut BGS10M Cut (S33861)		Mil-G-5514 Revision F One BUR Width
	Stakbak [®] bonded Scarf-cut Rod Seal	BG990M (S36991)		Mil-G-5514 Revision F One BUR Width
	Stakbak [®] bonded Scarf-cut Rod Seal	BG920M (S36992)		Mil-G-5514 Revision F Two BUR Width
	Stakbak [®] bonded Scarf-cut Piston Seal	BG010M (S37001)		Mil-G-5514 Revision F One BUR Width
	Stakbak [®] bonded Scarf-cut Piston Seal	BG420M (S37242)		Mil-G-5514 Revision F Two BUR Width
	Stakbak [®] bonded Scarf-cut Rod Seal	BG110M (S37011)		Mil-G-5514 Revision F One BUR Width
	Stakbak [®] bonded Scarf-cut Piston Seal	BG210M (S37021)		Mil-G-5514 Revision F One BUR Width
	Stakbak [®] bonded Scarf-cut Rod Seal	BG550M (S37055)		Mil-G-5514 Revision F Two BUR Width
	Stakbak [®] bonded Scarf-cut Piston Seal	BG660M (S37060)		Mil-G-5514 Revision F One BUR Width
	Stakbak [®] bonded Scarf-cut Rod Seal	BG760M (S37076)		Mil-G-5514 Revision F One BUR Width

Stakbak [®] bonded Scarf-cut Piston Seal	BG830M (S37083)	Mil-G-5514 Revision F One BUR Width
Stakbak [®] un-bonded Scarf-cut Piston Seal	BG410M (S37241)	Mil-G-5514 Revision F One BUR Width
Stakbak [®] un-bonded Scarf-cut Piston Seal	BG610M (S37261)	Mil-G-5514 Revision F Two BUR Width
Stakbak [®] un-bonded Scarf-cut Piston Seal	BG420M (S37242)	Mil-G-5514 Revision F Two BUR Width
Stakbak [®] un-bonded Scarf-cut Rod Seal	BG510M (S37251)	Mil-G-5514 Revision F One BUR Width
Stakbak [®] un-bonded Scarf-cut Rod Seal	BG710M (S37271)	Mil-G-5514 Revision F One BUR Width
Stakbak [®] un-bonded Scarf-cut Rod Seal	BG520M (S37252)	Mil-G-5514 Revision F One BUR Width

BU*** = Back-up Ring Uncut (Solid); BV*** = Back-up Ring Uncut (Solid); BG*** = Back-up Ring Scarf Cut; BH*** = Back-up Ring Spiral type

BUR – Back-up Ring

* The part number is for one ring only. Two rings should be ordered to form a set.

Back-up Ring Material Notes:

¹⁾ Mil-spec and BAC Backup Rings available in only AMS-R-8791 material, TSS Turcon T28 only

Table IV Back-up Ring Types: Other industry Standards including AS4716 and AS5857

Cross Section	Description	Part Number (Old ref. P/N)	Aerospace, Military or Boeing Part Number	Gland Standard
	Heavy-duty single turn Scarf-cut Rod or piston seal	BG440G* (S38544)		AS4716
	Heavy-duty single turn Scarf-cut Rod or piston seal	BG450G* (S38545)		AS4716
	Heavy-duty single turn Solid Rod or piston seal	BU190G* (S38619)		AS4716
	Heavy-duty single turn Solid Rod or piston seal	BU180G* (S38618)		AS4716

Cross Section	Description	Part Number (Old ref. P/N)	Aerospace, Military or Boeing Part Number	Gland Standard
	Heavy-duty single turn Scarf-cut Rod seal (see Note 2)	BG470G**	AS5781R10-XXX	AS4716 Revision A
	Heavy-duty single turn Scarf-cut Piston seal (see Note 2)	BH470G**	AS5781P10-XXX	AS4716 Revision A
	Heavy-duty single turn Solid Rod seal (see Note 2)	BU470G**	AS5782R10-XXX	AS4716 Revision A
	Heavy-duty single turn Solid Piston seal (see Note 2)	BV470G**	AS5782P10-XXX	AS4716 Revision A
	Heavy-duty single turn Scarf-cut Rod seal	BG47LG*	TSS Standard	AS4716 Revision A
	Heavy-duty single turn Scarf-cut Piston seal	BH47LG*	TSS Standard	AS4716 Revision A
	Heavy-duty single turn Solid Rod seal	BU47LG*	TSS Standard	AS4716 Revision A
	Heavy-duty single turn Solid Piston seal	BV47LG*	TSS Standard	AS4716 Revision A
	Two Back-up Rings in one Back-up Gland Width Cut, Rod seal	BG870G (S38587)		AS4716 Revision A
	Two Back-up Rings in one Back-up Gland Width Cut, Piston seal	BG880G (S38588)		AS4716 Revision A
	Heavy-duty single turn Scarf-cut Rod seal (see Note 3)	BG580E*	AS5861R 10 -XXX	AS5857
	Heavy-duty single turn Scarf-cut Piston seal (see Note 3)	BH580E*	AS5861P 10 -XXX	A\$5857
	Heavy-duty single turn Solid Piston seal (see Note 3)	BV580E*	AS5860P 10 -XXX	AS5857

BU*** = Back-up Ring Uncut (Solid); BV*** = Back-up Ring Uncut (Solid); BG*** = Back-up Ring Scarf Cut; BH*** = Back-up Ring Scarf Cut; BP*** = Back-up Ring Spiral type

Heavy-duty single turn Solid Rod seal (see Note 3)	BU580E*	AS5860R 10 -XXX	AS5857
Heavy-duty single turn Scarf-cut Rod seal	BG58LE*	TSS Standard	AS5857
Heavy-duty single turn Scarf-cut Piston seal	BH58LE*	TSS Standard	AS5857
Heavy-duty single turn Solid Piston seal	BV58LE*	TSS Standard	AS5857
Heavy-duty single turn Solid Rod seal	BU58VE*	TSS Standard	A\$5857
Heavy-duty single turn Rod or piston seal	BU890M* (S30989)		AS568 One or Two BUR Width
Heavy-duty single turn Scarf-cut Rod or piston seal (see Note 1)	BG940M* (S30294)	BACR12BM	Boeing Standard
Heavy-duty single turn Rod or piston seal (see Note 1)	BG660M* (S30310)	BACR12BP	Boeing Standard

BU*** = Back-up Ring Uncut (Solid); BV*** = Back-up Ring Uncut (Solid); BG*** = Back-up Ring Scarf Cut; BH*** = Back-up Ring Spiral type

BUR – Back-up Ring

* The part number is for one ring only. Two rings should be ordered to form a set.

For gland standard AS4716 note ID and OD differences, AMS3678/X color for rod and AMS3678/X for piston

New gland standard AS5857 for static seals only. Note dimensional differences to other Aerospace gland standards. Standard BUR AS5860 and AS5861 only available in AMS3678/10 material, carbon fiber-filled PTFE (Turcon T29)

BUR labeled TSS Standard are per Trelleborg Sealing Solutions recommended tolerances. These differ from the specification tolerances but parts are designed to same fit, form and function as the standards. TSS Standard BUR designs can be ordered in any Turcon material grade.

** Can be ordered with any AMS 3678 material code

Back-up Ring Material Notes:

¹⁾ Mil-spec and BAC Backup Rings available in only AMS-R-8791 material, TSS Turcon T28 only

²⁾ AS4716 Backup Rings available in Turcon T01, T09, T13, T44, T05, T04, T10, T40 & T29, PT00 which coincide with AMS3678/ materials (see Table I)

³⁾ AS5857 Backup Rings available is AMS3678/10 material only, TSS Turcon T29 only

AMS3678 Material Code	Filler Types	Turcon Code
AMS3678/1A	Virgin PTFE Grades A and B	T01
AMS3678/1B	Virgin PTFE Grades A and B	T28
AMS3678/2	PTFE filled with graphite	Т09
AMS3678/3	PTFE filled with glass fiber and molybdenum disulfide	T13
AMS3678/4	PTFE filled with glass fiber	T44
AMS3678/5	PTFE filled with inorganic pigment	T05
AMS3678/6	PTFE filled with bronze powder	T04
AMS3678/7	PTFE filled with carbon and graphite*	T10
AMS3678/8	PTFE filled with carbon fiber	T40
AMS3678/9	PTFE filled with inorganic pigment (AS4716)	
AMS3678/10	PTFE filled with carbon fiber	T29

Table V AMS3678 Material to Turcon Cross-reference

* Turcon T11 does not meet AMS3678/7

Table VI Cross-reference Guide for Back-up Rings

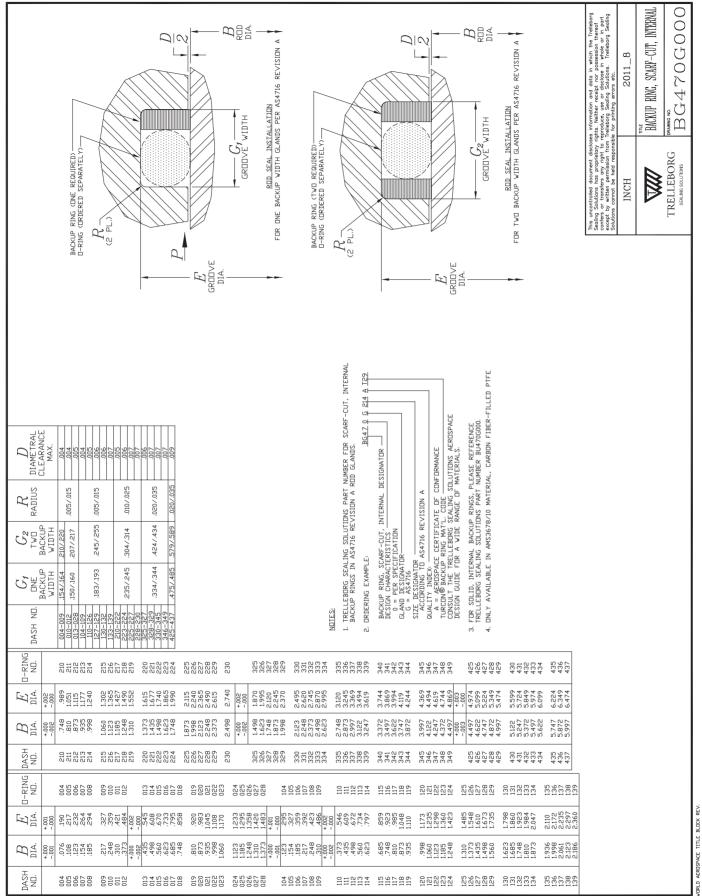
		Part Numbers				
Peeine	Aero-		Other	TSS Part Number		Description
Boeing standards	Military standards	space standards	Other Iss Full Charles standards Old New TSS TSS P/N P/N		Description	
BACR12AJ	MS28783					Spiral turn Back-up Ring
BACR12BM			A22549	\$30294	BG940M	Single turn Back-up Ring Heavy-duty, scarf-cut
BACR12BM			LS10862	\$30294	BG940M	Single turn Back-up Ring Heavy-duty, scarf-cut
BACR12BP			LS11060	\$30310	BU100M	Back-up Ring Heavy-duty, solid
	M8791/1	AS8791		S38049	BG910M	Single turn Back-up Ring, scarf-cut
	MS27595			S38027	BU950M	Back-up Ring Solid
	MS28773			\$38028	BM730S	Single turn Back-up Ring, Boss connection, scarf-cut
	MS28774			\$38029	BM740M	Single turn Back-up Ring, scarf-cut
	MS28782			S38030	BM820S	Spiral turn Back-up Ring
	MS9058					Single turn Back-up Ring, Boss connection, scarf-cut
		AS5781			BG470G BH470G	Single turn Back-up Ring, AS4716 glands, scarf-cut
		AS5782			BU470G BV470G	Single turn Back-up Ring, AS4716 glands
		AS5860			BG580E BH580E	Single turn Back-up Ring, AS5857 glands*, scarf-cut
		AS5861			BU580E BV580E	Single turn Back-up Ring, AS5857 glands*, solid

BU*** = Back-up Ring Uncut (Solid); BV*** = Back-up Ring Uncut (Solid); BG*** = Back-up Ring Scarf Cut; BH*** = Back-up Ring Scarf Cut; BP*** = Back-up Ring Spiral type; BM***= Mil-Spec Back-up Ring

* New gland standard AS5857 Back-up Rings for static seals only. Note dimensional gland differences to other Aerospace gland standards; AS4716 and Mil-G-5514. Only available in AMS3678/**10** material, carbon fiber-filled PTFE or Turcon T29, ordering example AS5861P**10**-XXX.

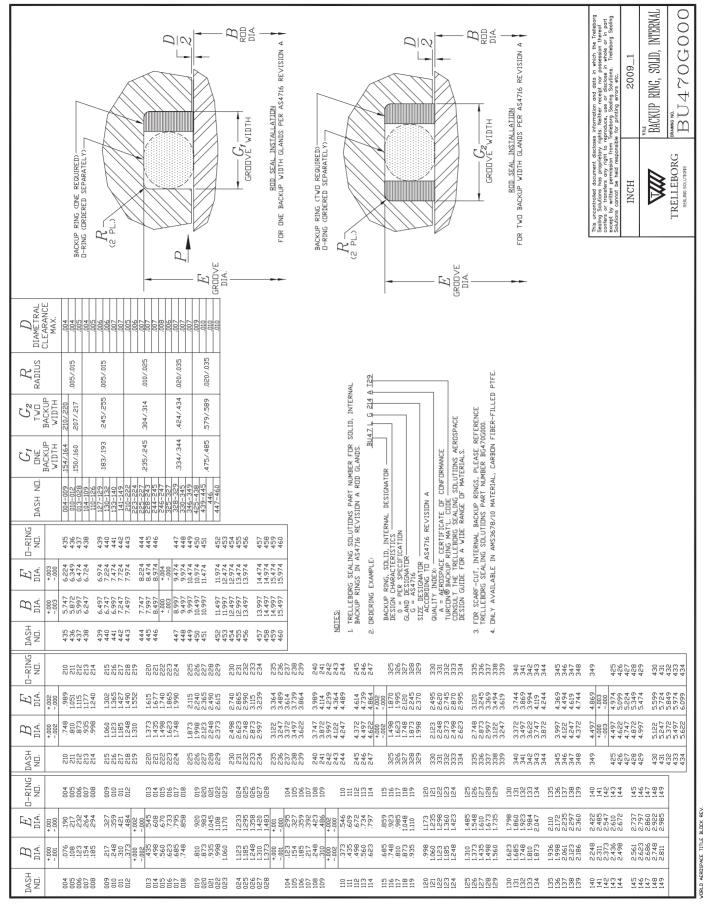
New P/N	Old P/N
BP090A	S11109
BG480M	S11248
BP170M	S12517
BU870M	S12587
BG660M	S12766
BUS00M	S13050
BG690M	S13069
BGS20M	\$13122
BG940M	\$30294
BU100M	\$30310
BU890M	\$30989
BUS70M	\$33157
BU230M	\$33823
BU440M	\$33824
BGS10M	\$33861
BG990M	\$36991
BG920M	\$36992
BG010M	\$37001
BG020M	\$37002

Table VII Conversions from new to old part numbers


-

New P/N	Old P/N
BG110M	S37011
BG210M	\$37021
BG550M	\$37055
BG600M	\$37060
BG760M	\$37076
BG830M	\$37083
BG410M	\$37241
BG420M	\$37242
BG510M	\$37251
BG520M	\$37252
BG610M	\$37261
BG710M	\$37271
BG440G	\$38544
BG450G	S38545
BG870G	S38587
BG880G	S38588
BU180G	\$38618
BU190G	\$38619

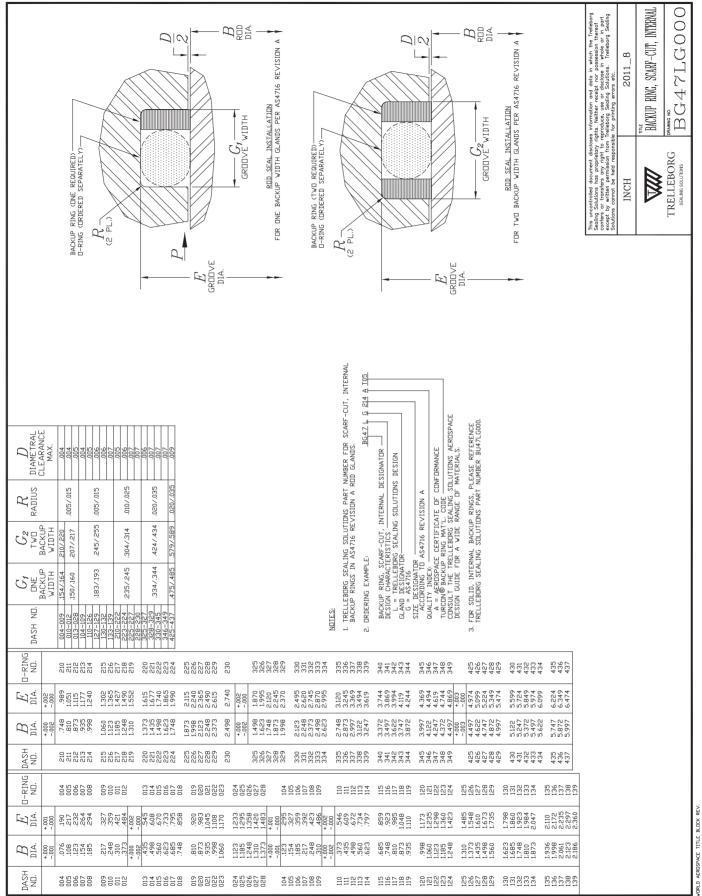
BU*** = Back-up Ring Uncut (Solid); BV*** = Back-up Ring Uncut (Solid); BG*** = Back-up Ring Scarf Cut; BH*** = Back-up Ring Scarf Cut; BP*** = Back-up Ring Spiral type



The drawings are also available on the CD supplied with this manual or they can be downloaded from www.tss.trelleborg.com.

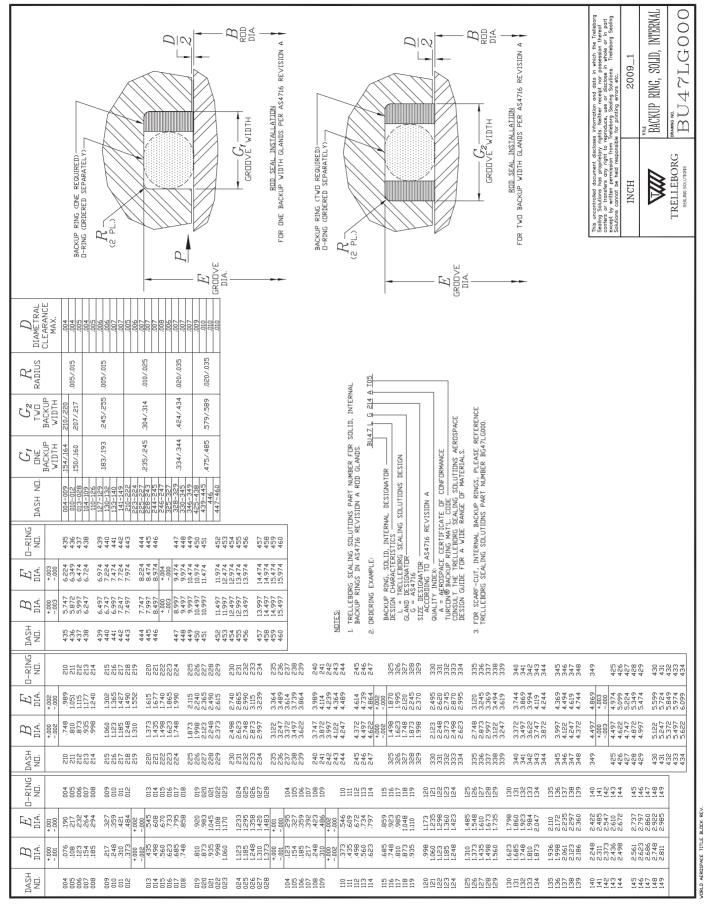
161

Seals/Back-up Rings for AS4716



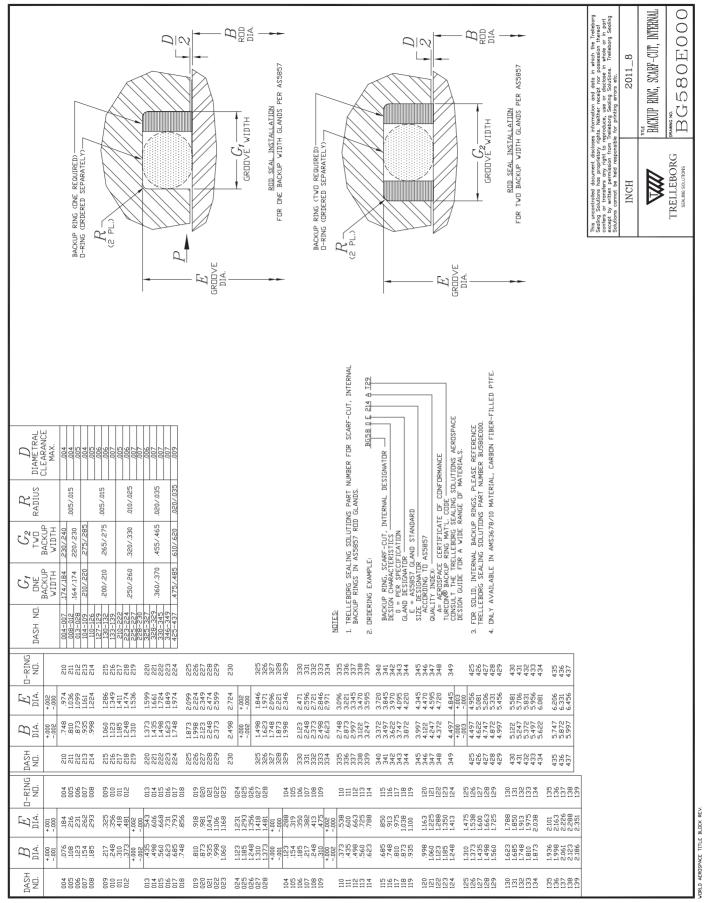
$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	The uncorrelated document discloses information and data in which the Treitborg applies and the section of a section and a section as a section as a section and a section and a section and a section as a section as a section as a section and a section and a section and a section as a
Mach A F D-ENK Mach F TVD Mach F Mach Mac	
□ - RING - R	349 342 342 342 342 342 342 342 342 342 342
H DIA. DIA	4.496 +.000 +.000 4.497 4.747 4.747 4.797 5.227 5.227 5.2497 5.2497 5.2497 5.2497 5.2497
	4,868 +.003 003 003 003 0399 0399 0399 0399 0399 0399 0399 0399 0399 0399 0399 0399 0394 0394 0394 0394 0394 0394 0394 0394 0394 0304
	349 427 427 427 427 427 423 433 433 433 433 433 433 433 433 433
	141 141 141 142 1442 1445 1445 1445 1445
······································	140 2.430 2.256 141 2.433 2.256 143 2.553 2.319 145 2.553 2.314 145 2.569 2.544 145 2.805 2.544 147 2.868 2.543 147 2.868 2.543 148 2.593 2.559 149 2.993 2.631 148 2.593 2.5756 149 2.993 2.631 149 2.6356 149 2.556 149 2.5566 2.5566 2.5566 2.5566 2.5566 2.5566 2.5566 2.5566 2.5566 2.556
	2:430 2:555 2:5555 2:5555 2:5555 2:5555 2:5555 2:5555 2:5555 2:5555 2:5555 2:733 2:733 2:9305 2:9305 2:9303 3:332 2:9320 2:9320 2:9320 2:9320 2:9320 2:9320 2:9320 2:9320 2:9320 2:9320 2:9320 2:9320 2:9320 2:5555 2:55555 2:55555 2:555555 2:555555 2:555555 2:555555 2:555555 2:555555 2:555555 2:5555555 2:555555 2:55555555
DASF N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	140 141 142 142 143 145 145 145 145 145 146 147 148 149 149

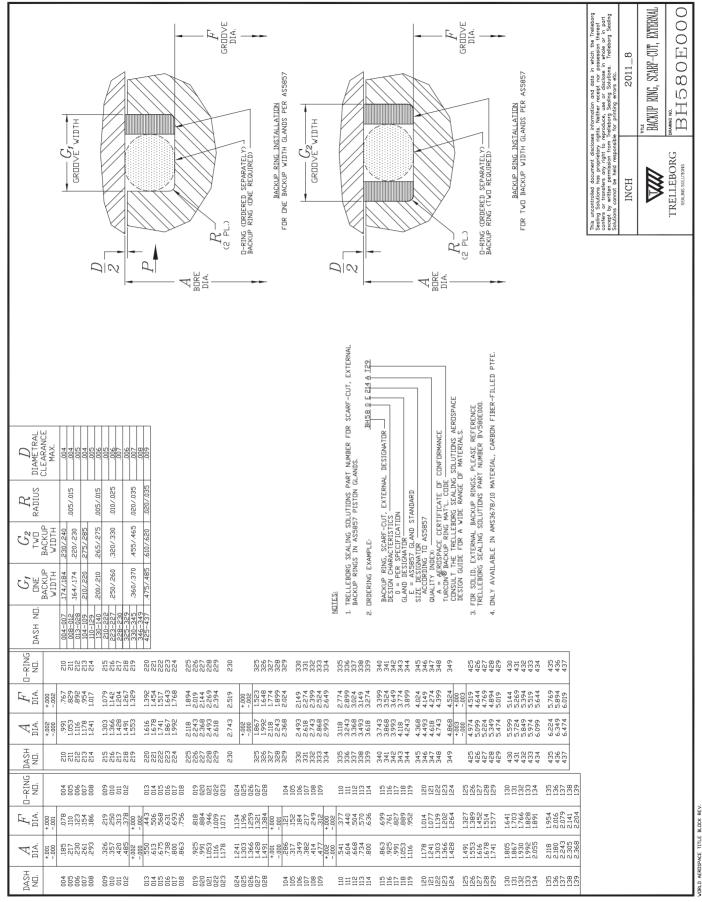
Back-up Ring and Stakbak[®]

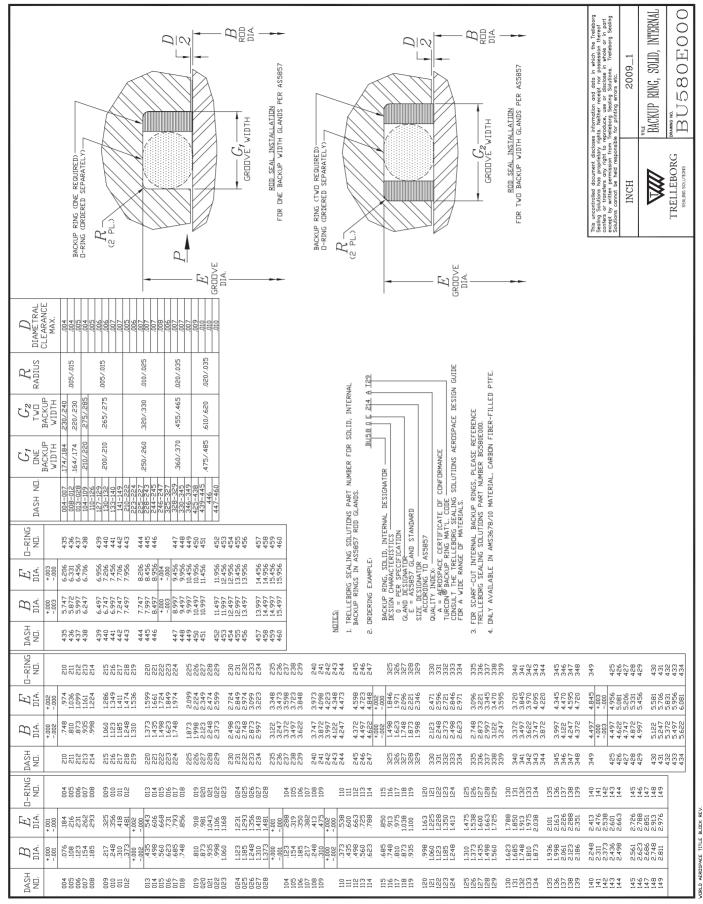


165

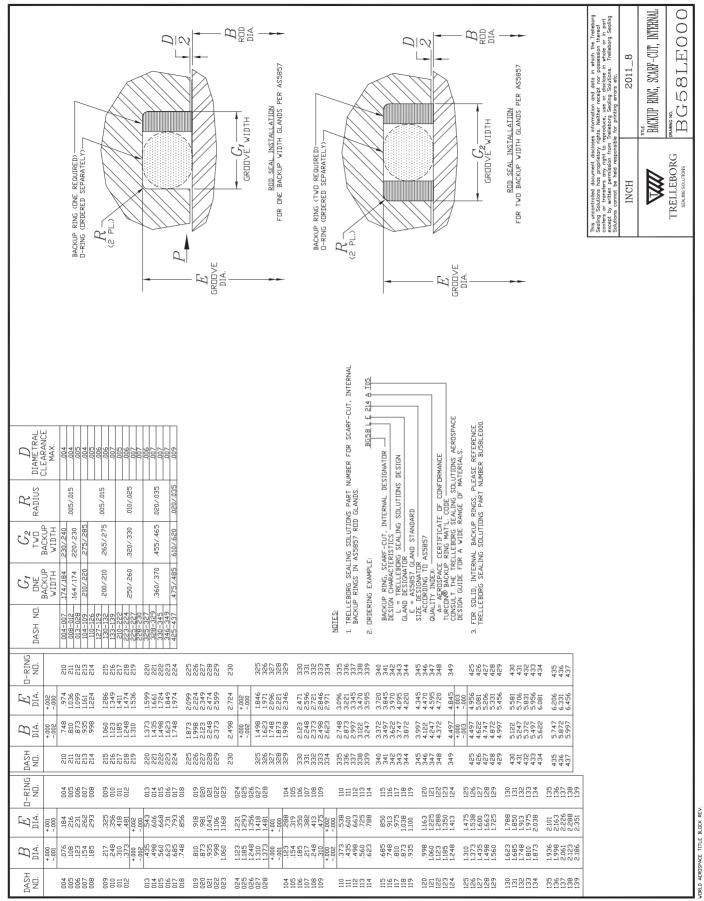
Seals/Back-up Rings for AS4716

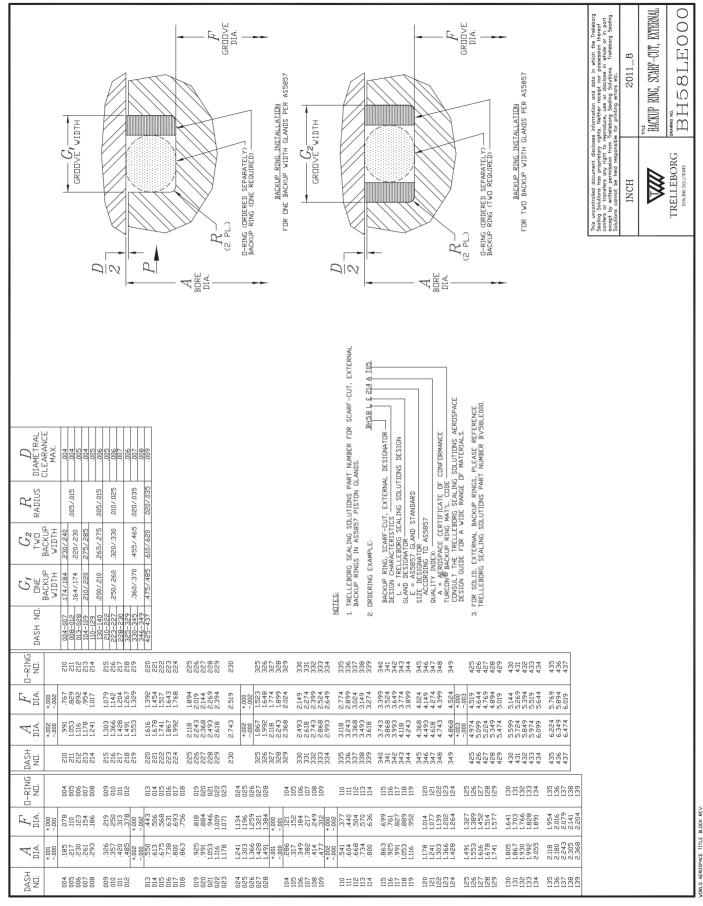


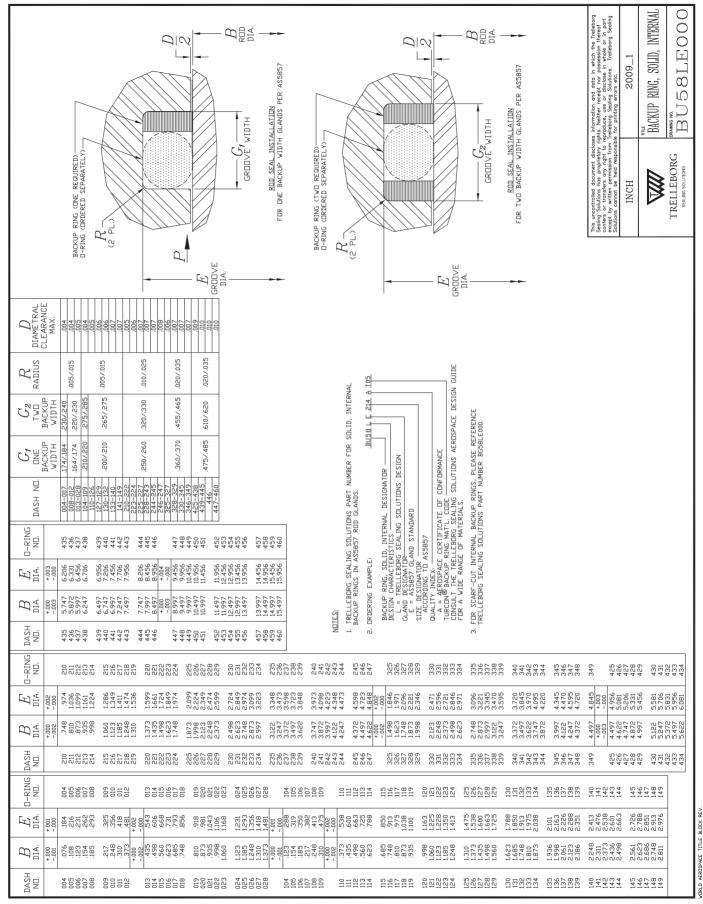

	· · · · · · · · · · · · · · · · · · ·
$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	This uncontrolled document discloses information and data in which the Treiteborg energy and submerses information which with a series of the
M_{11} M_{111} M_{111} M_{111} $M_$	
	349 425 425 426 428 428 428 428 428 423 432 433 433 432 432
H D D1A D D1A D D1A D D100 1000 S128 8128 S128 9336 S128 53356 S128 53356 S3376 533676 S3376 33376 S2146 11670 S2146 11672 S2146 11674 S3376 11672 S3376 11672 S	4,496 +,000 4,497 4,497 4,972 5,122,
A 101 A 101 A 101 A 101 A 1000	4.868 -1003 -1003 -1003 5.3224 5.3224 5.3229 5.3229 5.3259 5.3259 5.3259 5.3269
DAN DAN NA Sama Sama Sama Sama Sama Sama Sama Sam	349 425 425 427 427 428 428 429 423 433 433 433
□ □ − R □ − R	140 141 141 142 1445 1445 1445 1445 1445 14
<i>FT</i> 11151 11158 1	2:256 2:319 2:319 2:319 2:319 2:319 2:344 2:344 2:369 2:569 2:569 2:3569 2:3569 2:3569 2:3569 2:319 2:3569 2:319 2
A 1000 1000 1000 1000 1000 1000 1000 10	140 2.430 2.256 141 2.555 2.319 142 2.555 2.311 143 2.561 2.544 2.618 2.544 145 2.5743 2.569 145 2.805 2.563 146 2.503 2.563 147 2.805 2.631 147 2.805 2.631 148 2.933 2.5156 149 2.993 2.7556 149 2.7556 149 2.993 2.7556 149 2.75566 149
DASH NIC: H NIC:	140 141 142 1443 1445 145 145 146 146 149 149


Back-up Ring and Stakbak[®]

Back-up Ring and Stakbak[®]






GROUVE VIDTH GROUVE VIDTH CROUVE SEPARATELY GROVE SIGNATION CONCERENT SEPARATELY CONCERENT SEPARATELY	The successfue decorrent decorrent decorrent information that the interletor series of variations has properties when received on the part and exceeds by which is predications, and data in when each in part solutions carrier to main any properties when a receiver in the part INCH 2009–1 INCH 2009–1 Mut TRELLEBORG BACUP RING, SOLID, EXTERNAL Solutions sources BACUP RING, SOLID, EXTERNAL Provide BACUP RING, SOLID, EXTERNAL
D D GROUVE BUR D F DiA E F Secure subscription E F DiA E F F Secure subscription E F F E F F F F	The uncerted document de series of transfer on prime societors of transfer on prime societors of transfer on prime income to the prime income of t
DIAMETRAL DIAMETRAL CLEARARCE MAX. 0004 0005 0005 0005 0007 0007 0007 0007	
RADIUS .005/015 .005/015 .020/035 .020/035 .020/035 .020/035 .020/035 .020/035 .020/035 .020/010	
G2 BACKUP WIDTH <u>2307.240</u> 2657.275 2657.275 2657.275 3207.330 4557.465 4557.465 300.620 3107.620 3107.620 3107.620 300.620 300.620 307.6200 3	
G, MIDTH 2012/200 200/210 200/210 200/210 360/370 300/370 300/300 300/30000000000	
A F D-ERING DASH NL CF T/VD PACKUP RADIUS 2000 2000 2000 2001 2005/015 2005/015 2005/015 2014 2014 2014 2014 2005/015 2005/015 005/015 2014 2014 2014 2002 2012 205/015 005/015 2014 2015 2012 2012/201 205/230 005/015 005/015 2014 2012 2012 2012/201 205/230 005/015 005/015 2014 2012 2012 2012/201 2012/201 2007/015 005/015 2014 2012 2012 2012/201 2017/201 2007/015 005/015 2014 2012 2007/201 2007/201 2007/201 2007/015 005/015 2014 2012 2012 2012/201 2017/201 2017/015 007/015 2014 2012 2012 2017/201 2017/201 005/015	
A F D-R IA D1A D1A N IA D1A D1A N IA D1A D1A N 24 55789 43 274 55799 43 274 55799 43 274 55799 43 274 55799 44 274 55799 44 274 55799 44 274 55799 44 274 55799 44 274 11020 45 274 11020 45 274 11020 45 274 11020 45 274 11020 45 274 11020 45 274 11020 45 274 11020 45 274 11020 45 274 11020 45 274 11020 45 <tr< td=""><td></td></tr<>	
A DIA.	
DASH DASH NII: NII: NII: NII: NII: NII: NII: NII	
□ - RING - RINO	2 2 2 2 2 2 2 2 2 2 2 2 2 2
	+1000 -1003 -1
A 2012 Control of the	6.099 6.099 6.099 6.0974 6.090 6.099 6.099
DANA 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	420 426 426 426 426 428 428 428 423 433 433 433 433 433 433 433 433 433
□ - R.1 - R.1	1410 1440 1440 1440 1440 1440 1440 1440
	141 2-493 2-329 142 2-555 2-391 143 2-558 2-391 143 2-558 2-391 145 2-868 2-579 146 2-805 2-579 146 2-805 2-579 147 2-866 2-579 147 2-866 2-579 149 2-393 2-2764 149 2-393 2-2764 149 2-393 2-2764 149 2-393 2-2766 149 2-2766 149 2-2766 149 2-2766 149 2-2766 149 2
	2:555 2:555 2:555 2:680 2:6805 2:43 2:43 2:43 2:43 2:43 2:6805 2:993 2:993 2:993 2:993
DASH 005 005 005 005 005 005 005 005 005 00	141 142 144 145 145 145 145 146 146 149 149 149

172

Back-up Ring and Stakbak[®]

175

Seals/Back-up Rings for AS4716

176

Seals for AS4716 Rod and bore sizes only

Turcon [®] Dual Piston Ring	179
Turcon [®] Glyd Ring [®]	183
Turcon [®] Stepseal [®] 2K	191

Features and benefits

- Suitable for demanding dynamic applications
- Very low friction
- Wide operating temperature range
- Fits into narrow grooves
- Excellent chemical resistance
- React to pressure changes very quickly
- Low hysteresis
- Sealing characteristics remain constant over time
- Easy installation
- Available for AS4716 bore diameters from -112 to -447
- Bidirectional seal

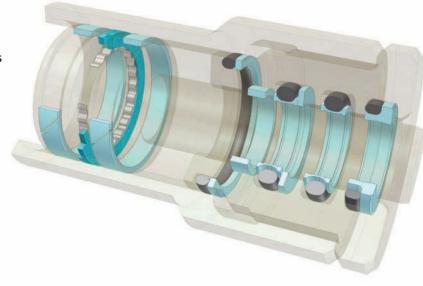


Illustration shows typical hydraulic cylinder with a sealing configuration incorporating Turcon[®] Dual Piston Ring.

Description

Turcon[®] Dual Piston Ring consists of two Turcon[®] rings, each with a step-cut. These rings are activated by a wave-shaped Stainless Steel expander. On the inside of the Turcon[®] rings there is a small notch into which a tab on the springs fits. This prevents the rings from rotating relative to each other. When installed correctly the step-cuts of the two rings will be separated by 180 degrees.

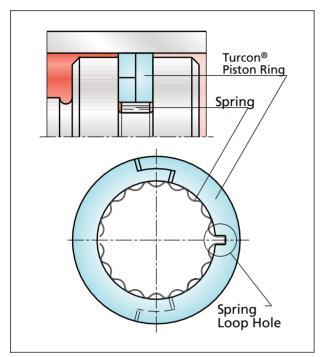


Figure 1 Turcon[®] Dual Piston Ring

Method of Operation

With zero or low system pressure, the two Turcon[®] rings of the Turcon[®] Dual Piston Ring are kept in contact with the bore by spring force. As the system pressure increases it acts on the side and inner diameter of the rings, forcing them against the bore.

Groove and ring width tolerances are very tight. This means that the Turcon[®] Dual Piston Ring can be made to fit the sealing groove closely. The seal will therefore react to pressure changes very quickly. Fly-by-wire flight controls, where minimum hysteresis is important, use this feature to its full extent.

The narrow seal design provides low friction in comparison to other seals for groove widths per AS4716. The use of metal expanders allows for a broader operating temperature range and improves the chemical resistance of the assembly. With no elastomer element, it also means that sealing characteristics remain constant over time.

The surface finish of the groove sidewalls is an integral part of sealing performance. It should be controlled within an average roughness range of $12 - 24 \mu in/0.4$ to 0.8 μm to achieve optimum performance from the interface.

Technical Data

Operation pressure: Up to 5,000 psi / 35 MPa for standard design Special versions are available for higher pressures

Speed: Up to 49 ft/s/ 15 m/s

Temperature range: -94°F to +500°F/ -70°C to +260°C Special versions are available that can operate in higher temperatures

Clearance: As per AS4716

Media: Compatible with virtually all media and gases At high temperatures and pressures the seal can operate at the upper speed level

Avoid combining extreme limits.

To provide greater strength in demanding dynamic applications, an insert can be added to the anti-rotation tab (a.r.t.). This option can be ordered by inserting a K in the fifth character of the part number.

Spring materials

The standard spring material is 17-7 PH Stainless Steel condition CH900, spring code PH. This will be supplied if the spring code is omitted.

Other spring materials are 17-7 PH Stainless Steel condition C, spring code CC and Stainless Steel 301 per AMS 5519, fully hard, spring code SS.

Table I Turcon[®] Dual Piston Ring

Cross Section	Description	Part Number	Gland Standard
	Dual Piston Ring Set	PF52_	TSS Gland Bore per AS4716

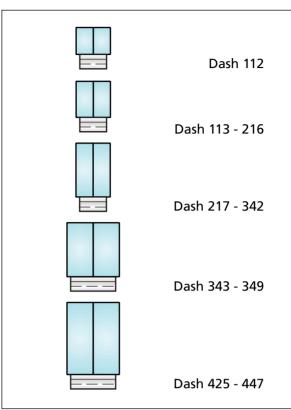
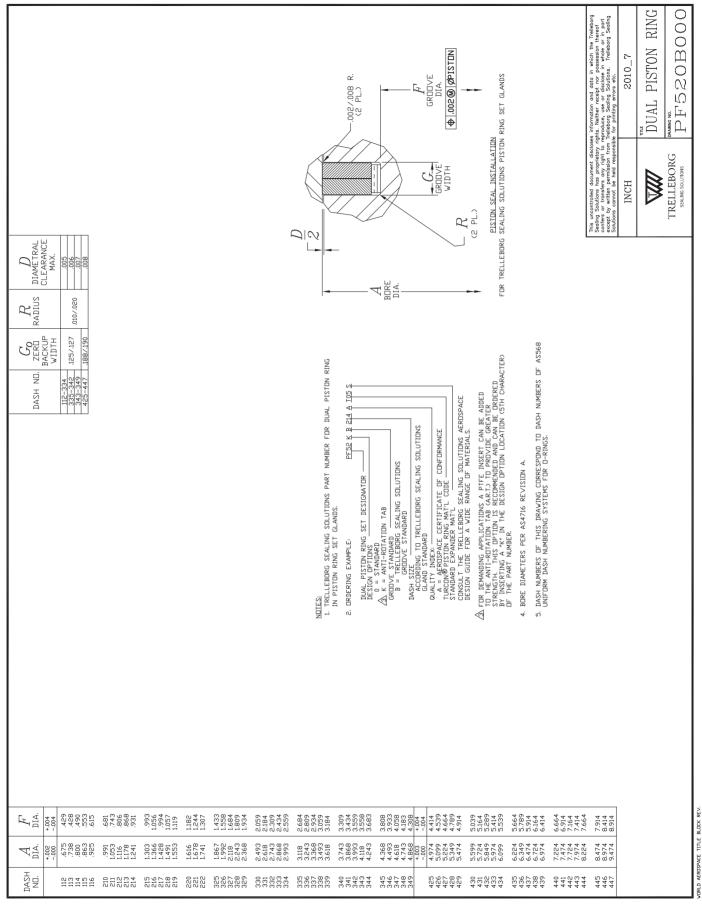



Figure 2 Relative size of Turcon[®] Dual Piston Ring cross section

Turcon[®] Dual Piston Ring

Features and benefits

- High sealing efficiency
- Low wear
- Long service life
- High operational reliability
- Low friction
- Stick-slip-free operation
- Suitable for narrow grooves
- Design flexibility adaptable for almost all grooves sizes
- Easy installation
- Available for all MIL-G-5514F and AS4716 Rod and Bore diameters
- Custom designs available
- Bidirectional seal

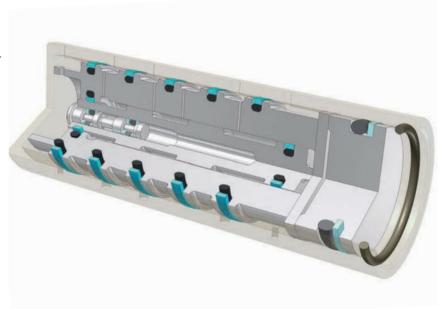


Illustration shows typical hydraulic valve fitted with Turcon[®] Glyd Ring[®].

Description

 ${\sf Turcon}^{\circledast}$ Glyd ${\sf Ring}^{\circledast}$ is a simple and reliable seal consisting of a ${\sf Turcon}^{\circledast}$ seal cap activated by an elastomer O-Ring.

A full range of sizes is offered to suit all MIL-G-5514F and AS4716 rods and bores. Custom designs are available on request.

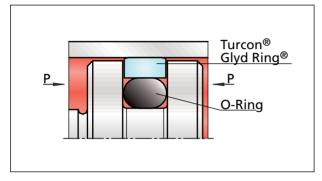


Figure 1 Turcon[®] Glyd Ring[®]

Method of Operation

The slight interference fit of Turcon[®] Glyd Ring[®] ensures initial contact with the mating surface. A true slipper seal, Turcon[®] Glyd Ring[®] is energized by an elastomer O-Ring at zero or low pressure. As the pressure increases, the Turcon[®] Glyd Ring[®] is energized by hydraulic pressure, forcing it against the sealing surface. The seal's geometry allows the formation of a lubricating hydro-dynamic oil film under the seal in reciprocating applications. This results in low wear and long service life with high sealing efficiency.

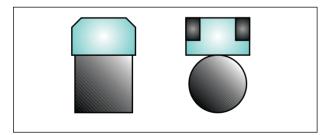


Figure 2 Square-ring energized Glyd Ring[®], Turcon[®] Glyd Ring[®] CR

Optional Configurations

As mentioned above, the Turcon[®] Glyd Ring[®] is versatile and capable of being designed to meet specific application requirements. Some common custom configurations include the Turcon[®] Glyd Ring[®] CR and the square-ring energized Glyd Ring[®]

Notches

Where Turcon[®] Glyd Ring[®] is subjected to bidirectional pressure, pressure from both sides alternately, it should always be equipped with sidewall notches. See figure 2. This allows the pressure to properly activate the elastomer. See Figure 3.

Turcon[®] Glyd Ring[®] for piston use is equipped as standard with notches. For rod versions notches must be specified if required.

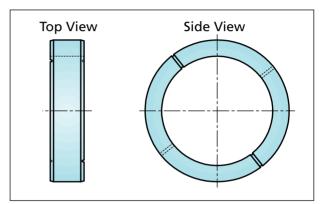


Figure 3 Turcon[®] Glyd Ring[®] notches

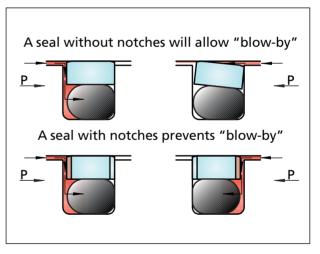


Figure 4 Functioning of Turcon[®] Glyd Ring[®] with notches

Using a seal without notches may allow blow-by, where the pressure shoots over the top of the Turcon[®] Glyd Ring[®] cap and forces the seal down into the groove. See SAE document AIR 1243 for more information on this topic.

Latest information available at www.tss.trelleborg.com Edition August 2011

Turcon[®] Glyd Ring[®]

Technical Data

Operation pressure:	5,000 psi/ 35 MPa static 3,000 psi/
	21 MPa dynamic

Speed:

reciprocating movements

Up to 49.2 ft/s/ 15 m/s for

- Temperature range: -65°F to +390°F/ -54°C to +200°C depending on elastomer
- Clearance: Per the AS4716 rod and bore clearances
- Media: Mineral oil-based hydraulic fluids, flame-retardant hydraulic fluids, environmentally-safe hydraulic fluids (bio-oils), phosphate esterbased hydraulic oils, water and others depending on the elastomer material selected

Avoid combining extreme limits.

Series

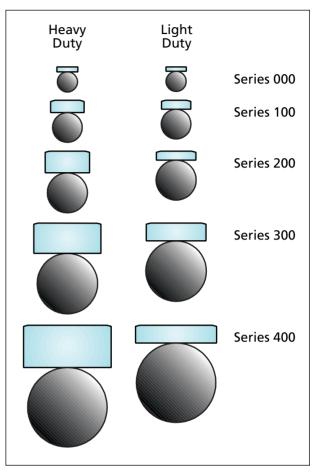


Figure 5 Relative Size of Turcon[®] Glyd Ring[®] cross section

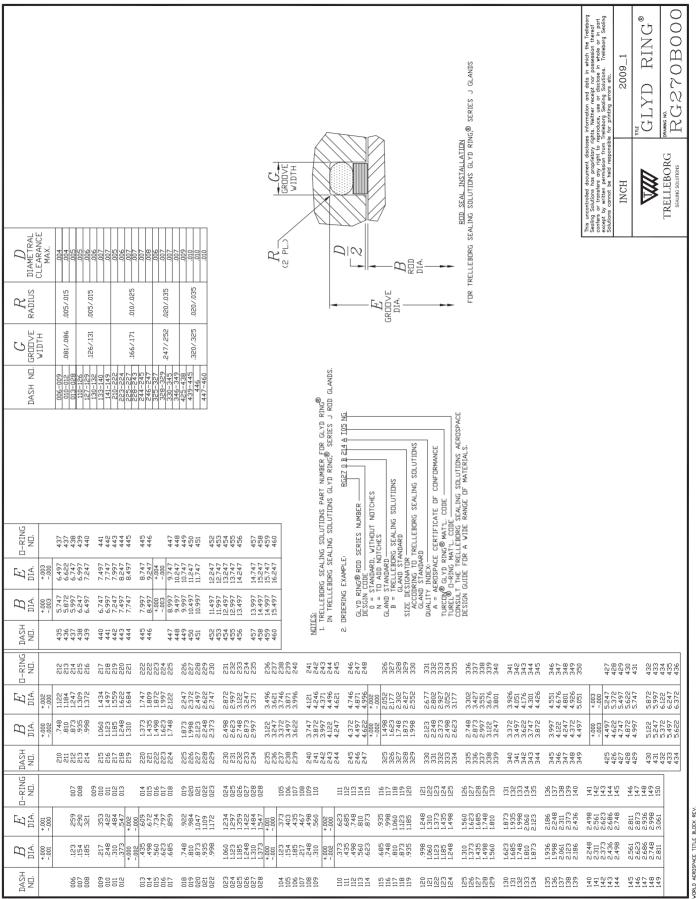
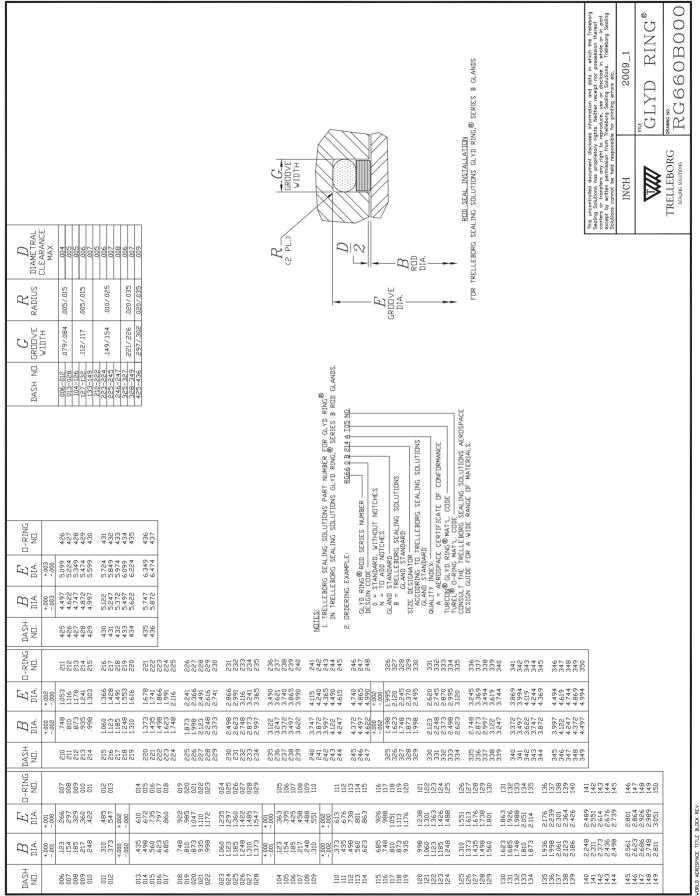
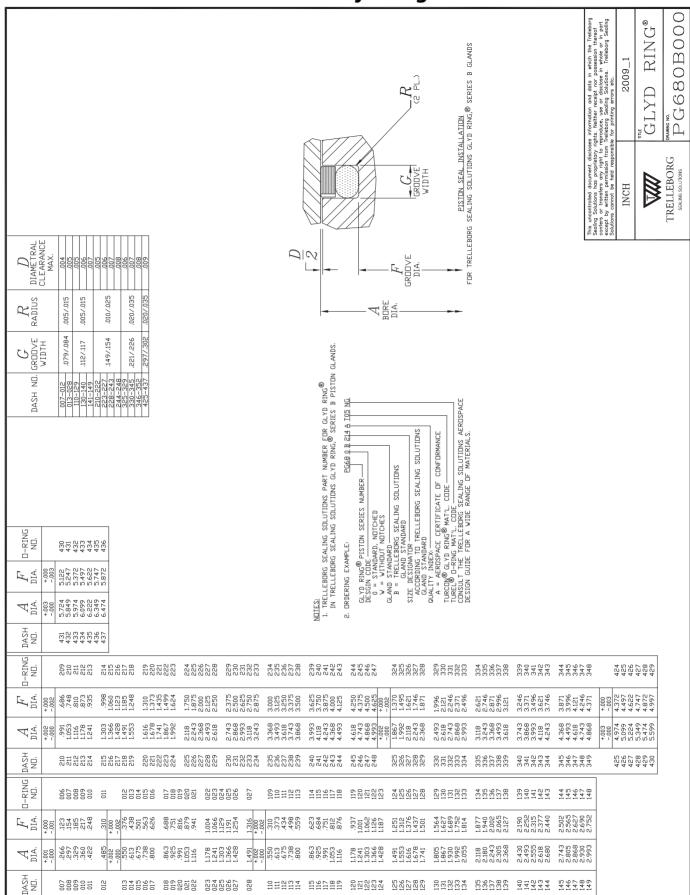


Table I Turcon[®] Glyd Ring[®] Types

Cross Section	Description	Part Number	Gland Standard
	Series J Rod	RG27_B	TSS Gland Rod per AS4716
	Series J Piston	PG28_B	TSS Gland Piston per AS4716
	Series B Rod	RG66_B	TSS Gland Rod per AS4716
	Series B Piston	PG68_B	TSS Gland Piston per AS4716



The drawings are also available on the CD supplied with this manual or they can be downloaded from www.tss.trelleborg.com.


187

F F F F F F F F F F F F F F
PISTIDA SEAL INSTALLATION GROUVE VIDTH BISTIDA SEAL INSTALLATION BIS SEALING SOLUTIONS GLVD RING SEALING SOLUTIONS GLVD RING PARTING SOLUTIONS GLVD RING SOLUTIONS GLVD RING PARTING SOLUTIONS GLVD RING RING RING RING RING PARTING SOLUTIONS GLVD RING RING RING RING RING RING RING RING
SERIES SE
1. TEELLEBDEG SEALING SOLUTIONS PART NUMBER EUR GUY RING [®] SERIES J PISTON GLANDS. 2. ORDERING EXAMPLE: 2. ORDERING EXAMPLE: EGGB 0. 21 RING [®] PISTON SERIES NUMBER EGGB 0. 21 RING [®] PISTON SERIES NUMBER EGGB 0. 21 RING [®] PISTON SERIES NUMBER ESCION DIT 2. * VITHOUT NITCHED 0. * STANDARD 1. * VITHOUT NITCHED 0. * STANDARD 1. * VITHOUT NITCHED 0. * STANDARD 1. * VITHOUT NITCHED 1. * VITHOUT NITCHED 2. * VITHOUT NITCHED 3. * VITHOUT NITCHED 4. * VITHOUT NITCHED 3. * VITHOUT NITCHED 4. * VITHOUT NITCHED
NUMBER - NUMBER - NUMBER - NUMBER - SELUTION GL SELLIN SELUTION SELUTION SELLIN SERUING SENGE OF SANGE OF SANGE OF SERUING SENGE OF SERUING SERUIN
A SELUTIO ING SOLUTIO INGTERES ISEALING INGTERES ISEALING INARD INARD INARD INARD INARD INARD INARD ISEALING A WIDE A A WIDE A
SEALING CONTRACTIN
RELLEDBOG SEALI IN TRELLEDBOG SEALI DESGID COTE CLAP RING® PIST DESGID COTE D = STANDER D
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
33865 33865 42524 42524 42525 14338 15689 1000 1000 1000 1000 1000 1000 1000 10
4,243 4,456 4,4618 4,4618 4,4618 4,4618 1,4006 1,40
2445 2445 2445 2445 2445 2445 2445 2445
2228 222222 422222 222222 222222 222222 222222
748 8603 8603 8603 8603 8603 8603 8603 860
117 591 7.41 119 1053 966 1116 1053 966 1117 1041 1178 1222 1203 1073 1224 1241 1241 1241 1241 1241 1265 1333 1236 1266 1343 1366 1116 1449 1241 1267 1546 1366 1210 1805 1555 131 1805 1566 132 1993 1993 133 1805 1566 134 1805 1566 135 2055 1993 136 2055 1993 137 2055 1993 138 2043 1993 144 2.443 2043 144 2.543 2043 145 2.543 2169 144 2.943 2743

Seals for AS4716 Rod/Bore only

AERDSPACE TITLE BLOCK REV.

The drawings are also available on the CD supplied with this manual or they can be downloaded from www.tss.trelleborg.com.

Features and benefits

- High static and dynamic sealing effect
- Eliminates the build-up of disruptive intermediate pressures between seals
- High extrusion resistance, to suit wide hardware clearances
- Operational at pressures up to 11,600 psi/ 80 MPa
- Operational at speeds up to 49 ft/sec/ 15 m/s with reciprocating movements
- High-frequency operation
- Operating temperatures of -65°F to +500°F/ -55°C to +260°C depending on the elastomer
- Low friction, increasing performance and working life
- Stick-slip-free starting, no sticking even after extended periods of rest
- High abrasion resistance, maximum operational reliability
- Compatible with virtually all media
- Suited to mineral oil-based hydraulic fluids, flame-retardant hydraulic fluids, environmentally-safe hydraulic fluids (bio-oils), water and other media
- Simple installation without seal edge deformation
- Unidirectional seal

Illustration shows typical hydraulic cylinder with a sealing configuration incorporating Turcon[®] Stepseal[®] 2K.

Description

Developing a hydraulic cylinder sealing arrangement with certainty of performance over a wide range of applications has provided a long- term engineering challenge for Trelleborg Sealing Solutions. The first breakthrough was in the 1970s, when Turcon[®] Stepseal[®] revolutionized fluid sealing in cylinder applications. Through ongoing research and development Stepseal[®] has been further refined and improved, with the latest version, Turcon[®] Stepseal[®] 2K, achieving new levels in cylinder sealing performance.

With Turcon[®] Stepseal[®] 2K it is possible to arrange several seals, one behind the other, to create a static and dynamic sealing arrangement. This double-acting tandem seal eliminates the build-up of disruptive intermediate pressures between seals that can cause a loss of operating efficiency, seal destruction and leakage.

Turcon[®] Stepseal[®] 2K enhances sealing efficiency. Better extrusion resistance gives superior leakage control and allows larger hardware tolerances, making cylinder production more economic. It is also more uniform, showing low-friction characteristics throughout an extended life and even during the run-in period when friction forces can have the greatest effect on hydraulic seals.

Offering unsurpassed sealing security, Turcon[®] Stepseal[®] 2K can be used with all lubricating and nonlubricating hydraulic fluids, including zinc-free oils and water-based hydraulic fluids. They can also be matched to specific mating surfaces and media. Seals can be specified to meet the precise degree of extrusion and abrasion tolerance required for an application.

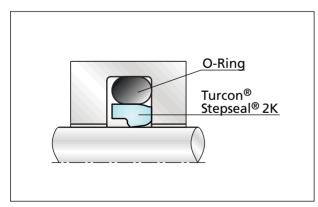


Figure 1 Turcon[®] Stepseal[®] 2K

Method of Operation

The sealing performance of Turcon[®] Stepseal[®] 2K is a result of its hydrodynamic properties. The seal edge creates a steep contact pressure gradient on the high-pressure side and a shallow contact pressure gradient on the low-pressure side. The controlled pressure gradients minimize fluid adherence to the piston rod during the extending stroke and enable residual fluid film on the rod to be returned into the system on the return stroke.

The O-Ring relief chamber reduces pressure loading on the seal. This optimizes contact with the rod, improving sealing performance at high service pressures. A special high-lift rear chamfer combines a smooth downstream sealing face with the ability to meet large radial clearances and hardware tolerances.

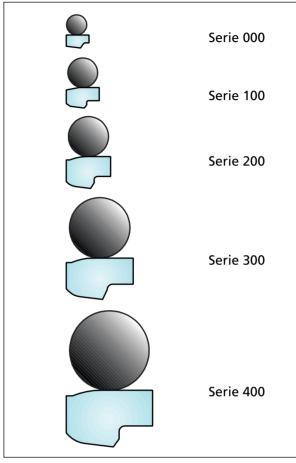
Turcon[®] Stepseal[®] 2K

Technical Data

Operation	pressure:	Up to	11.600	psi/ 80 MPa
operation	pressure.	00 10	11,000	p5// 00 Will u

Speed:	Up to 49.2 ft/s/ 15.0 m/s
Temperature range:	-65°F to +500°F/ -55°C to +260°C depending on elastomer
Clearance:	As per AS4716 Clearance can be larger when combined with a Slydring [®] bearing.
Media:	Mineral oil-based hydraulic fluids, flame-retardant hydraulic fluids, environmentally-safe hydraulic fluids (bio-oils), phosphate ester- based hydraulic oils, water and others depending on the elastomer material selected

Series



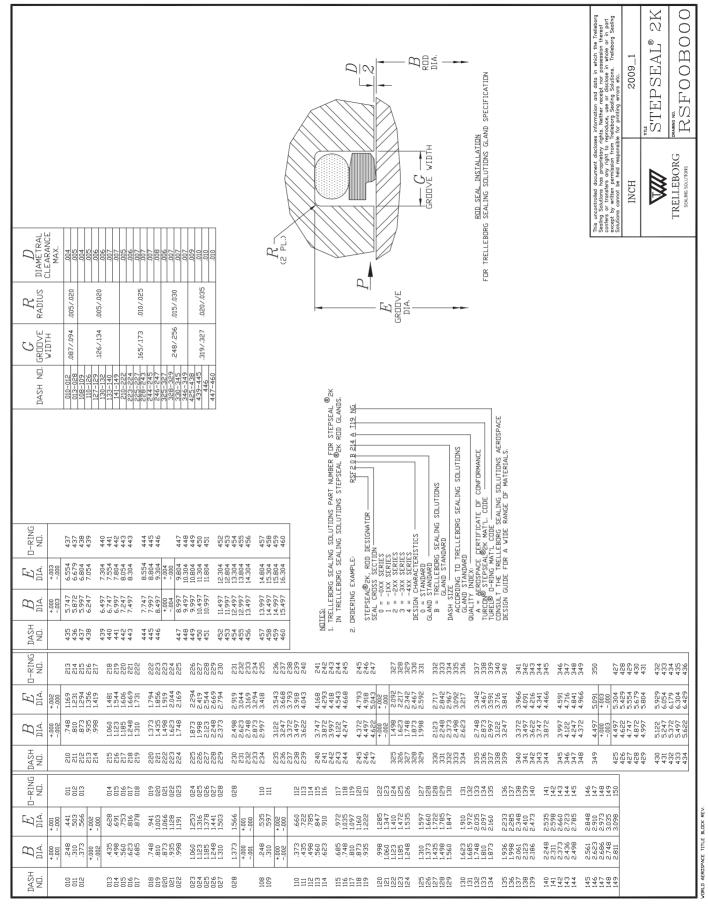
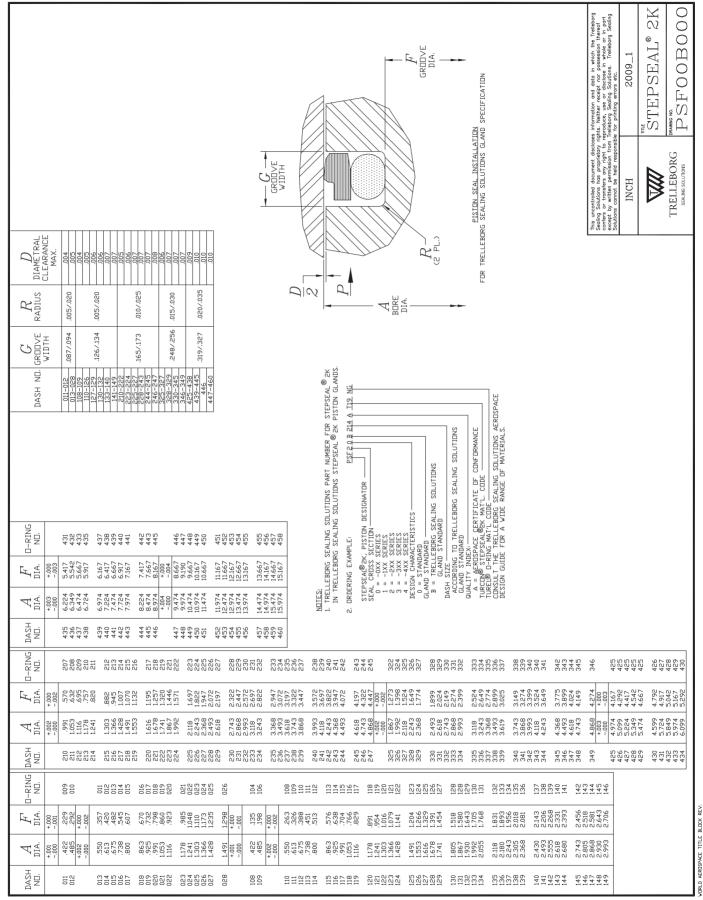

Figure 2 Relative size of Turcon[®] Stepseal[®] 2K cross section

Table I Turcon[®] Stepseal[®] 2K Types


Cross Section	Description	Part Number	Gland Standard
	Rod	RSF00B	TSS Gland Rod per AS4716
	Piston	PSF00B	TSS Gland Piston per AS4716

Turcon[®] Stepseal[®] 2K

Rotary seals for AS4716 – Rod and bore sizes only

Introduction	199
Critial Factors in Seal Selection	201
Turel [®] Radial Oil Seal	205
Turcon [®] Roto Variseal [®]	209
Turcon [®] Varilip [®] PDR	215
Turcon [®] Roto Glyd Ring [®]	227

Specialized High-Performance Rotary Sealing Products

Rotary seals are installed in rotating or pivoting components to keep in the lubrication fluid that is needed for long-term operation of these devices. Sealing configurations need to be leak-free while preventing ingress of mud and water.

When it comes to successfully sealing in rotary applications, specialized products are required. Trelleborg Sealing Solutions offers a range of unique options, both standard and custom, that give exceptional performance characteristics in demanding rotary situations.

Within aerospace application the most commonly used types are Turcon[®] Roto Glyd Ring[®], Turcon[®] Varilip[®] PDR, Turcon[®] Roto Variseal[®] and Turel[®] Radial Oil Seals. One of these options can provide the optimum solution for your rotary sealing requirements.

Illustration shows a typical application for rotary seals. Turcon[®] Varilip[®] PDR keeps grease round a ball bearing while excluding dirt and water spray from the outside.

Table I Rotary seal types

Cross Section	Description	Gland Standard	Pressure	Velocity
	Turcon [®] Roto Glyd Ring [®]	Trelleborg Standard Gland	< 2,100 psi < 15 MPa	< 3.3 ft/s < 1 m/s
R.	Turcon [®] Varilip [®] PDR	ISO 16859	< 300 psi < 2 MPa	< 164 ft/s < 100 m/s
	Turcon [®] Roto Variseal [®]	Trelleborg Standard Gland	< 4,200 psi < 30 MPa	< 6.6 ft/s < 2 m/s
	Turel [®] Radial Oil Seal	DIN 3760 and ISO 6194/1	< 15 psi < 0.1 MPa	< 115 ft/s < 35 m/s

Service life depends on PV factor (pressure x velocity) Avoid combining extreme limits

Table II Typical features of rotary seal types

		R.		
Main features	Turcon [®] Roto Glyd Ring [®]	Turcon [®] Varilip [®] PDR	Turcon [®] Roto Variseal [®]	Turel [®] Radial Oil Seal
Static sealing	Good	Good	Good	Excellent
Dynamic sealing	Good	Very good	Good	Very good
Hardware surface requirements	Low	High	Medium	Low
Installation	Closed gland	Open or split housing	Split housing	Open or split housing
Chemical resistance	Good with correctly selected seal material	Excellent	Excellent	Good with correctly selected seal material
Start friction/Stick-slip	Medium	Very low	Low	Medium
Running friction	Medium to high	Very low	Low	Medium
Shelf life	As for selected elastomer	Unlimited*	Unlimited*	As for selected elastomer
Application	Rod and piston	Rod	Rod and piston	Rod
Pressure capability	High	Low to Medium	Medium	Low
Speed capability	Medium to low	High	Medium to high	Medium to high

*Certain versions may contain elastomer. Shelf life then as specified for selected elastomer.

Latest information available at www.tss.trelleborg.com Edition August 2011

Critical Factors in Seal Selection

To ensure long seal life several factors must be considered in selection of the optimal material for the elastomer element.

Chemical Compatibility

Seal materials must be compatible with system media, in particular with lubricants.

The various oils used in rotary applications as lubricants have differing effects on elastomers. In aerospace these are primarily mineral based and synthetic hydrocarbon based oils and greases. Trelleborg Sealing Solutions offers materials that will give optimized performance in contact with this media. Turcon[®] PTFE based compounds are compatible with virtually all media.

Temperature Resistance

The aging of elastomers has a significant effect on their useful life and higher temperatures accelerate the aging of these materials. Elastomers can become hard and brittle, elongation may decrease and compression set increase. Axial cracks at the sealing edge are a typical indication that the seal has been exposed to excessively high temperature.

Turcon[®] PTFE based compounds are capable of operating at more elevated temperatures than elastomers.

For guidance on temperature limits for different materials, see materials section.

Peripheral Speed and Number of Revolutions

Different designs of sealing elements affect the magnitude of friction, resulting in varying temperature rises. As a result the various designs of the sealing element allow different maximum peripheral speeds. Below are the approximate maximum values for the permissible peripheral speeds for sealing elements without a dust lip in NBR, EP, FKM, FVMQ and PTFE when there is no differential pressure and where adequate lubrication or cooling of the sealing edge by the sealing medium exists. The curve shows that higher peripheral speeds are permissible for larger shaft diameters. This is due to the fact that the cross-sectional area increases in proportion to the square of the diameter, thus increasing the heat dissipation capacity of the shaft.

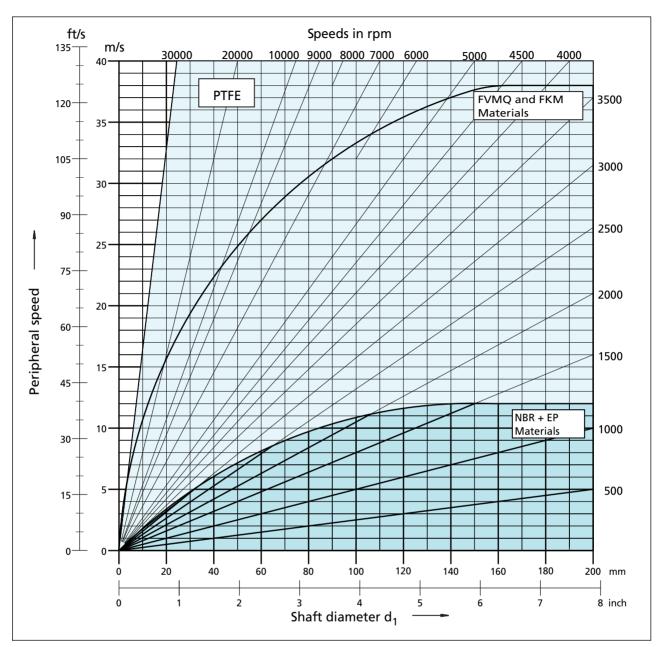


Figure 1 Peripheral speed capability of rotary seal materials

Eccentricity

The graph in Figure 3 shows the maximum recommended operating envelope for various elastomer sealing materials and for Turcon[®] Varilip[®] PDR. The levels of eccentricity should be kept within the limits shown. In order to achieve a uniform radial load of the sealing lip on the shaft, the best possible coaxiality, or static offset, should be maintained between the housing bore and the shaft, as shown in Figure 4.

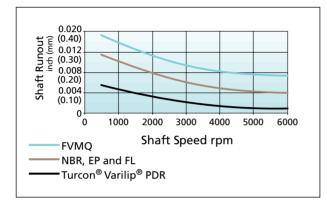


Figure 2 Dynamic Eccentricity Capability

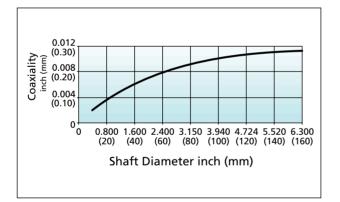


Figure 3 Coaxial Tolerance Capabilities

Surface Finish Recommendations – Radial Oil Seals and PTFE Lip Seals

It is important to control the shaft preparation for rotary applications and to ensure the desired nonorientation of the shaft surface finish as it relates to sealing. The recommended shaft condition is to have no machining leads and be free from scratches, nicks or defects as well as any contamination.

Plunge grinding is recommended for the finishing process. This gives short to medium grind marks which are good for lip lubrication. It also produces a lay that is perpendicular to the shaft axis with no lead angle. Additionally, there should be traversing during the plunge grinding process to eliminate any smear or detrimental patterns on the shaft.

Surface hardness is recommended to be 55 HRc, hardness depth minimum .012 in/ 0.3 mm. In certain circumstances such as low circumferential velocity, good lubrication and no contamination, surfaces with hardness levels below 55 HRc are suitable.

Surface Finish Recommendations

Measurement	Standard Recommendation
Ra	< 8 μin/ < 0.2 μm
Rz (Rtm)	39 -157 μin max. 1.0 - 4.0 μm max.
Tp (Mr)	50 - 90% @ depth of p = 0.25 Rz (Rtm) relative to reference line = 5 %
Rsk	-0.1 to –3

Latest information available at www.tss.trelleborg.com Edition August 2011

Features and benefits

- Good static sealing
- Compensates for different levels of thermal expansion
- No risk of corrosion due to fretting
- Can have a rougher bore surface
- Lip design gives low radial forces
- Can be installed in split housings
- Unidirectional seal

Illustration shows typical Turel[®] Radial Oil Seal application.

Description

Turel[®] Radial Oil Seal consists of a single elastomer lip bonded to a metal support with a garter spring. There are many different variations of the Turel[®] Radial Oil Seal, both with and without an integral dust excluding lip. These dust lips can be positioned either within the seal width or beyond the seal base.

A successful Turel[®] Radial Oil Seal runs with a thin film of fluid under the sealing lip. The film acts as a lubricant and allows a meniscus to form on the other side of the sealing lip. Turel[®] Radial Oil Seals can also include hydrodynamic aids, which create positive sealing by returning any oil leaking back into the system.

Turel[®] Radial Oil Seal type A and E are recommended for aerospace applications. A wide range of other types are available if required.

Method of Operation

The total radial force of the sealing lip is given by elastomer pre-tension together with tensile spring force. The former depends on the deformation and elasticity of the elastomer, geometry of the sealing lip and interference between shaft and seal.

Further information

More detailed design recommendations for Turel[®] Radial Oil Seals can be found in the Rotary Seals catalog. This can be downloaded from the Trelleborg Sealing Solutions website at www.tss.trelleborg.com or a copy obtained from your local marketing company.

Technical Data

Operation pressure: Up to 7.2 psi/ 0.05 MPa

Speed:	Up to 98 ft/s/ 30 m/s depending on elastomer material
Temperature range:	Up to -40°F to +390°F/ -40°C to +200°C depending on elastomer material
Media:	Mineral oil-based hydraulic fluids, flame-retardant hydraulic fluids, environmentally-safe hydraulic fluids (bio-oils), phosphate ester-based hydraulic oils, water and others depending

selected

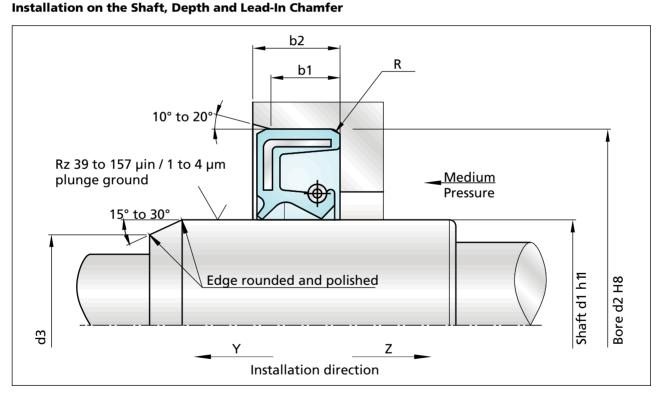
on the elastomer material

Avoid combining extreme limits.

Table I Radial Oil Seals to DIN 3760 type A and AS

Cross Section	Description	Part Number	Gland Standard
	DIN 3760 Type AS	TRA	TSS Gland
	DIN 3760 Type A	TRE	Rod per AS4716

Design Instructions


See the specific national and international standards that contain instructions for design and assembly (e.g. DIN 3760/3761 and ISO 6194/1).

Installation in the Gland

The static seal in the mounting bore is provided by the corresponding force fit allowance at the outer sheath of the seal.

Turel[®] Radial Oil Seals are referred to according to the design of their outer cover – rubber-coated (smooth or corrugated) or metallic. The bore is dimensioned to fit ISO H8.

Values for the surface roughness in the gland are specified in ISO 6194/1.

Figure 1 Installation of the Radial Oil Seal Depending on the installation direction (Y or Z), a chamfer or radius on the shaft is recommended.

Latest information available at www.tss.trelleborg.com

Edition August 2011

Table II Housing Dimensions

Ring Width b in b mm	b1 .033 x b in (0.85 x b mm)	b2 b + .012 in (b + 0.3 mm)	r2 max. in (mm)
.276	.234	.287	
7	5.95	7.3	
.315	.268	.327	.020
8	6.80	8.3	0.5
.394	.335	.406	
10	8.5	10.3	
.472	.406	.484	
12	10.30	12.3	
.591	.502	.602	.028
15	12.75	15.3	0.7
.787	.669	.799	
20	17.00	20.3	

Table III Shaft Chamfer and Radius Dimensions

d1	D2	R
inch	inch	Inch
(mm)	mm	mm
< .393	d1 – .059	.079
(< 10)	d1 – 1.50	2.0
.393 – .787	d1 – .079	.079
(10 – 20)	d1 – 2.01	2.0
.787 – 1.181	d1 – .098	.118
(20 – 30)	d1 – 2.49	3.0
1.181 – 1.575	d1 – .118	.118
(30 – 40)	d1 – 3.00	3.0
1.181 – 1.575	d1 – .118	.118
(30 – 40)	d1 – 3.00	3.0
1. 575 – 1.969	d1 – .138	.157
(40 – 50)	d1 – 3.50	4.0
1. 969 – 2.756	d1 – .157	.157
(50 – 60)	d1 – 4.00	4.0
2.756 – 3.740	d1 – .177	.197
(70 – 95)	d1 – 4.50	5.0
3.740 – 5.118	d1 – .217	.236
(95 – 130)	d1 – 5.50	6.0
5.118 – 9.449	d1 – .276	.315
(130 – 240)	d1 – 7.00	8.0
9.449 – 19.685	d1 – .433	.472
(240 – 500)	d1 – 11.00	12.0

Features and benefits

- Suitable for rotary, reciprocating and static service
- Remains tight in gland even when subject to oscillating or helical movements
- Low coefficient of friction
- Good scraping effect
- Stick-slip-free operating for precise control
- High abrasion resistance and dimensional stability
- Withstands rapid changes in temperature
- Protects against mechanical torsion
- No contamination in contact with fuel, oxygen or air
- Excellent resistance to aging
- Unlimited shelf life
- Unidirectional seal

Illustration shows typical Turcon[®] Roto Variseal® application.

Description

Turcon[®] Roto Variseal[®] is excellent in rotary, reciprocating and static applications when there is a need to lock the seal in the groove. It is a single-acting seal consisting of a U-shaped seal jacket and a V-shaped corrosion-resistant metal spring.

The flanged heel of Turcon[®] Roto Variseal[®] prevents the seal from rotating by clamping it in the gland. The seal's short and heavy dynamic lip offers reduced friction, long service life and a good scraping effect, even in highly viscous media.

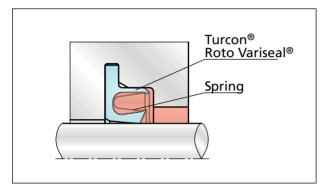


Figure 1 Turcon[®] Roto Variseal[®]

The Turcon[®] jacket material and that of the spring can be matched to specific requirements. This allows Turcon[®] Roto Variseal[®] to be used in a wide range of applications. These are not confined to hydraulics but also in fuel and environmental control systems, as well as oxygen and space applications.

Turcon[®] Roto Variseal[®] is available in a special Hi-Clean version where the spring cavity is filled with a Silicone elastomer. Preventing contaminants from being trapped in the seal, this design works well in applications involving mud or slurries. It keeps grit or ice from packing into the seal cavity, which can inhibit the spring action.

Method of operation

At low and zero pressure, the metal spring provides the primary sealing force. As the system pressure increases, the main sealing force is achieved by the system pressure. This ensures a tight seal from zero to high pressure.

Technical data

Operation pressure:	Up to 2,000 psi/ 15 MPa for dynamc loads Up to 3,500 psi/ 25 MPa for static loads
Speed:	Up to 6.5 ft/s/ 2.0 m/s rotating
Temperature range	: -148°F to +500°F/ -100°C to +260°C For specific applications at lower temperatures, contact your local Trelleborg Sealing Solutions marketing company.
Media:	Virtually all fluids, chemicals and gases

Avoid combining extreme limits.

Mating surface materials

Sealing of applications with rotating movements requires very good mating surfaces. A minimum hardness of 55 HRC is recommended to a hardening depth of at least .012 in/ 0.3 mm.

Coated surfaces must be finished with particular care:

- Chrome-plating must not peel off in service
- Good heat dissipation must be assured by the coating

Unhardened mating surfaces should have a Brinell hardness of at least 1,700 N/mm².

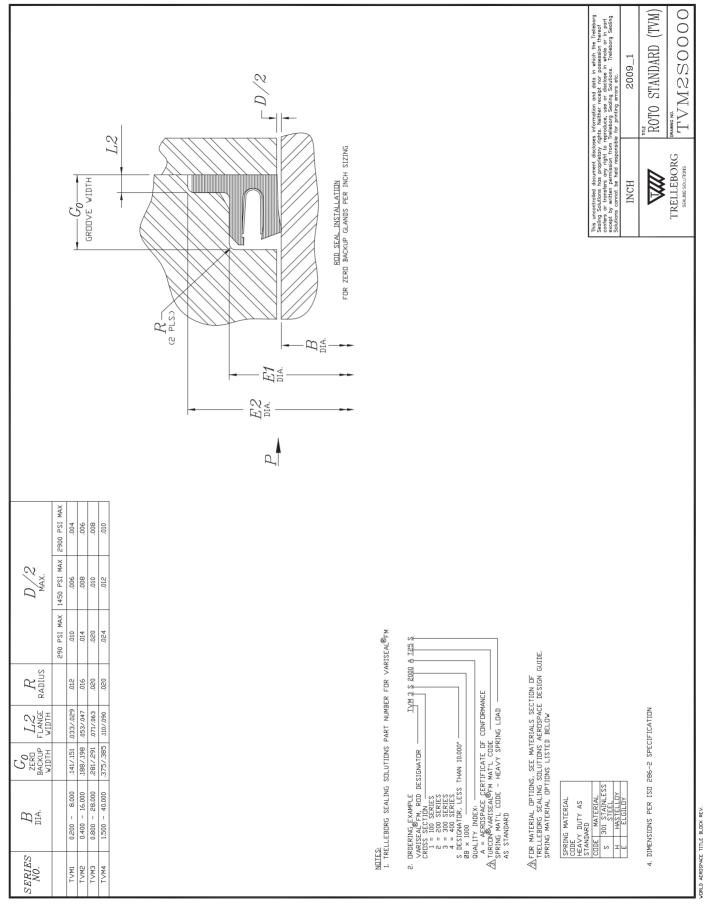
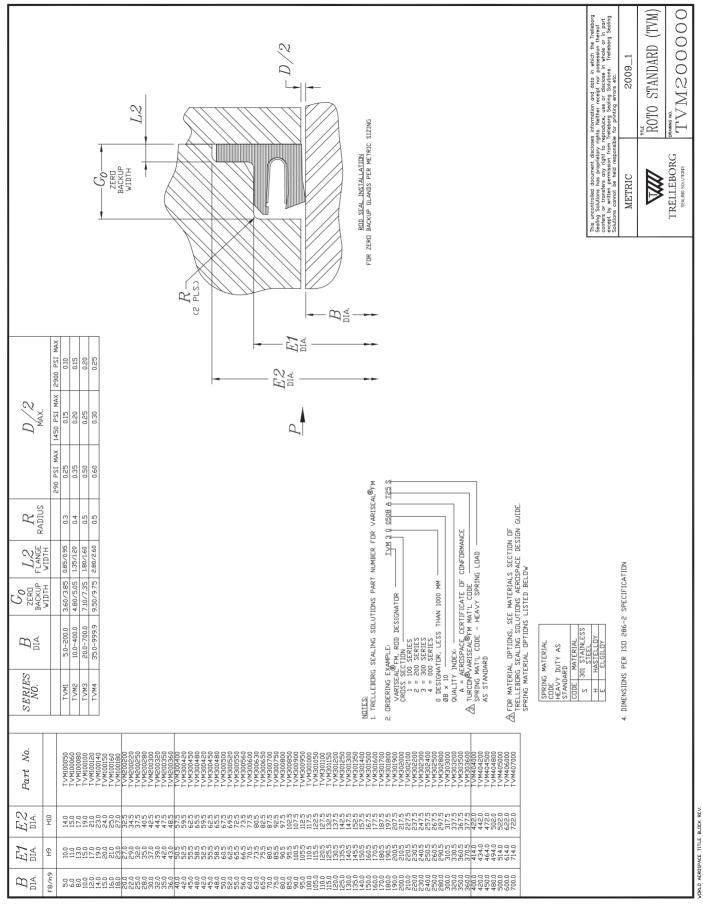


Table I Turcon[®] Roto Variseal[®]


Cross Section	Description	Part Number	Gland Standard
	Turcon [®] Roto Variseal [®]	TVM_S0000 (inch) TVM_00000 (metric)	TSS Gland Rod per AS4716

Turcon[®] Roto Variseal[®]

Turcon[®] Roto Variseal[®]

Features and benefits

Benefits of Turcon[®] Varilip[®] PDR include:

Turcon[®] PTFE based sealing lip

- Low-friction to facilitate reduced power loss and friction-induced heat
- Unique self-lubricating hydrodynamic feature further reduces friction
- Advanced geometries engineered to give excellent performance in almost every highspeed rotary situation
- Multiple lip configurations to address most sealing needs
- Material compatible with virtually all media
- Available in FDA-compliant grades

Metal body

- Durability in harsh environments
- Effective sealing on static outer diameter
- Resistance to thermal cycling
- Choice of high-quality metals including Stainless Steel, aluminum and other specialized metals such as Hastelloy[®] or Titanium
- High corrosion resistance
- Superior precision-machined finish forimproved sealing on the static interface

Overall Turcon[®] Varilip[®] PDR seal

- Contributes to a reduction in power consumption of equipment
- High speed capability up to 328 ft/s / 100 m/s
- Wide operating temperature range from -76° to +392°F/ -60° to +200°C
- Options available for dry-running applications and for soft shafts
- Retrofits in radial oil seal grooves
- Unlimited shelf life with no special storage requirements

Turcon[®] Varilip[®] PDR has several lip combinations that retain oil or grease while giving excellent protection from dust and sand.

Description

Turcon[®] Varilip[®] PDR rotary shaft seal is a metal bodied seal with a mechanically retained Turcon[®] sealing element. It extends the boundaries imposed by elastomer radial shaft seals, utilizing advanced materials and design techniques to provide optimum sealing performance for each application. The outcome is a superior sealing solution, which retains a compact seal envelope.

Standard elastomer rotary shaft seals have a limited application range with respect to temperature, surface speed, media compatibility, pressure or a combination of these. This is due to the inherent limitations of different elastomer grades. They also have limited suitability for applications with inadequate lubrication.

Turcon[®] Varilip[®] PDR rotary shaft seals are characterized in particular by low friction and their stick-slip-free running, reducing temperature generation and permitting higher peripheral speeds.

Method of operation

Turcon[®] Varilip[®] PDR seals are constructed from two parts – a precision manufactured metal body and a mechanically retained Turcon[®] sealing element. Unlike seals with pressed metal cases, Turcon[®] Varilip[®] PDR does not require a gasket to provide mechanical retention of the lip. This improves both the chemical resistance and temperature range of the sealing system.

Turcon[®] has inherent memory. A distorted Turcon[®] component will attempt to recover to the profile it had during the sintering cycle of its manufacturing process. This feature is used to provide the necessary radial loading of the sealing lip onto the shaft.

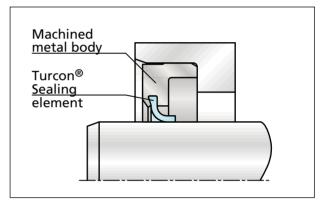


Figure 1 Turcon[®] Varilip[®] PDR seal

When required, Turcon[®] Varilip[®] PDR is available with a hydrodynamic feature on the Turcon[®] sealing lip. This provides a positive displacement of fluid as a result of shaft rotation, giving improved sealing in applications where the shaft only rotates in a single direction. The feature also increases the flexibility of the lip, allowing a wider contact band between the Turcon[®] lip and the shaft. This helps to reduce shaft load and associated wear.

Table I Turcon[®] Varilip[®] PDR Types

Turcon[®] Varilip[®] PDR seals are produced in one of five basic design styles, detailed in table below.

Cross Section	Part Number	Description
Turcon [®] Varilip [®] PDR Type A / Type 1	TJ1 _ B (Inch) TJA _ B (Metric)	Type A is a single lip seal suitable for applications up to a pressure of 73 psi/ 0.5 MPa. It is used when an elastomer radial shaft seal is unable to withstand the temperature or friction, in medium or poor lubrication. It operates at sealing surface speeds up to 328 ft/s / 100 m/s with sufficient cooling and lubrication of the sealing lip.
Turcon [®] Varilip [®] PDR Type B / Type 3	TJ3 _ B (Inch) TJB _ B (Metric)	Type B is the preferred choice for applications in which high seal integrity is demanded or where contaminated media are to be sealed. This type offers a back-up sealing lip to provide secondary sealing. Pressure limit is 73 psi/ 0.5 MPa.
Turcon [®] Varilip [®] PDR Type C / Type 4	TJ4 _ B (Inch) TJC _ B (Metric)	Type C can be used for applications with higher pressures when an elastomer radial shaft seal can no longer be considered. Due to reinforcement of the sealing lip, pressures up to 145 psi/ 1 MPa are possible as pump, shaft or rotor seals.
Turcon [®] Varilip [®] PDR Type D / Type 5	TJ5 _ B (Inch) TJD _ B (Metric)	Type D can operate with pressure from both sides. Pressure differential of up to 73 psi/ 0.5 MPa is permissible. It is also possible to separate two different media with this single seal.
Turcon [®] Varilip [®] PDR Type G / Type 6	TJ6 _ B (Inch) TJG _ B (Metric)	Type G is similar to Type D but has a non-contacting environmental sealing element rather than a full lay-down lip. This prevents ingress of dust and dirt into the system while also ensuring torque and resulting power consumption are kept to a minimum.

All designs are to Trelleborg Sealing Solutions gland standard and rod per AS4716.

Lip style B is selected as default for bi-directional shaft rotation. For anti-clockwise shaft rotation select A and for clock-wise shaft rotation select C.

Materials

Sealing lip

The proper function of Turcon[®] Varilip[®] PDR depends on the material used for the sealing lip. The compounds used for these are manufactured specially modified for Turcon[®] Varilip[®] PDR. Particular importance is attached to the optimization of friction and wear properties, while providing excellent sealing performance, even at high peripheral speeds. The table below shows the Turcon[®] materials available as Turcon[®] Varilip[®] PDR seals. Additional compounds have been developed for specific applications and these are available on request.

Table II Turcon[®] sealing element materials

Material, Applications, Properties, Fillers		Operating temp.		Mating surface	psi/ MPa	
		F°	C°	hardness	Maximum	
Turcon[®] T25 Standard material with exceptional wear and friction characteristics.	T25	-76 to +392	-60 to +200	Min. 55 HRC At low pressure Min. 45 HRC up to 13 ft/s	290 psi 2 MPa	
For lubricated running, e.g. oil, grease-filled gearboxes Glass fiber, lubricant				4 m/s		
Turcon[®] T40 For all lubricating and non-lubricating fluids, especially water. Used with medium hard shafts in applications where there is risk of shaft wear. Carbon fiber	т40	-76 to +392	-60 to +200	Min. 30 HRC	290 psi 2 MPa	
Turcon® T78 Particularly good running behavior allows use in dry running situations or when lubrication is poor. Can be used with soft shaft surfaces, e.g. Stainless Steel shafts in fuel systems and electronic devices. Aromatic polymer	T78	-76 to +392	-60 to +200	Min. 170 HB	290 psi 2 MPa	
Turcon[®] M83 Specially designed for dry-running situations. Gives particularly good results in electrical and electronic applications. Can also be used lubricated. Glass fiber, pigment	M83	-76 to +392	-60 to +200	Min. 55 HRC	290 psi 2 MPa	

Other Turcon[®] materials are available by using the relevant material code when ordering.

FDA compliant materials, for use in environmental control systems and oxygen supply, are available on request.

Metal Body

The preferred material for the metal body of Turcon[®] Varilip[®] PDR is Stainless Steel 304L. Other materials such as Stainless Steel 316L and Zinc-Plated Mild Steel are available within the standard range. The table below shows the codes for these materials. Other specialized materials are available on request. Ordering Turcon[®] Varilip[®] PDR in any material other than Stainless Steel 304L may result in extended lead-time.

Metal Body Materials

Code	Material
1	Stainless Steel 304
2	Stainless Steel 316
4	Mild Steel (Zinc-Plated)
5	Aluminum

Technical Data

Speed

The graph below shows the superior surface speed capability of ${\rm Turcon}^{\circledast}~{\rm PDR}$ compared to elastomer shaft seals.

The operating speed directly impacts the temperature generated by the seal and is an important factor when considering the requirements for the sealing system.

The actual limiting speed will depend on temperature, pressure, media, lubrication, heat dissipation and shaft condition within a specific application.

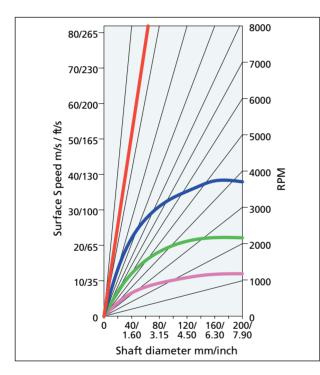


Figure 2 Surface speed as a function of shaft diameter and RPM

Table III Surface Speed

General recommended maximum surface speed					
Turcon [®] Varilip [®] PDR		19,680 ft/min	100 m/s		
Fluoroelastomer		7,500 ft/min	38 m/s		
Silicone		7,500 ft/min	38 m/s		
Polyacrylic		4,320 ft/min	22 m/s		
Nitrile		2,340 ft/min	12 m/s		

Speed capability depends on application conditions

Latest information available at www.tss.trelleborg.com Edition August 2011

Temperature

All Turcon[®] PDR seals are capable of outstanding high and low temperature performance compared to those including elastomer materials. So, unlike other PTFE lip seals, the Turcon[®] PDR seal is not limited in its temperature performance by the presence of an elastomer gasket. This gives it excellent temperature range capability.

The temperatures in the figure below are general working limits for the seal material. In all cases the effective limit for a rotary shaft seal application would be lower.

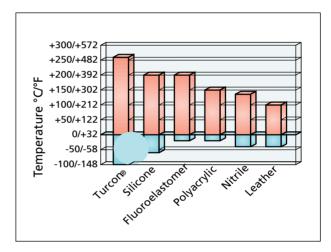


Figure 3 Maximum and minimum temperatures for different materials

Table IV Temperature

General recommended minimum / maximum temperature					
Filled PTFE	-148 to +500°F	-100 to +260° C			
Fluoroelastomer	-4 to +392° F	-20 to +200° C			
Silicone	-76 to +392°F	-60 to +200° C			
Polyacrylic	-4 to +300°F	-20 to +150° C			
Nitrile	-40 to +275°F	-40 to +135° C			
Leather	-40 to +212°F	-40 to +100° C			

Pressure

Turcon[®] Varilip[®] PDR Types A, B, D and G are suitable for pressures up to 73 psi/ 0.5 MPa. Turcon[®] Varilip[®] PDR Type C provides a double sealing lip design for pressures up to 145 psi/ 1 MPa.

Pressures heavily influence the contact force between the Turcon[®] lip and the shaft, which in turn determines heat generation. This must be taken into consideration when selecting the appropriate seal type.

 $\mathsf{Turcon}^{\circledast}$ $\mathsf{Varilip}^{\circledast}$ PDR seals can remain leak-tight when exposed to pressurization during static shaft conditions.

Fluid resistance

Turcon[®] consists of fully substituted carbon-carbon chains. The outstanding physical and chemical properties of Turcon[®] can be attributed to the resulting carbon-fluorine bonds, which are among the strongest known in organic chemistry.

Turcon[®] Varilip[®] PDR seals are resistant to mineral acids, bases, common organic fluids and solvents.

A particular benefit of Turcon[®] Varilip[®] PDR is a resistance to oil additives and biofuels, which have an adverse effect on many elastomers. Specification of Turcon[®] Varilip[®] PDR allows increased use of additives within applications, leading to a longer oil service life.

Environmental exposure

Turcon[®] Varilip[®] PDR is unaffected by oxidation, ultraviolet radiation or ozone. This makes the seal ideal for use in applications exposed to the atmosphere or in outer space.

Lubrication starvation

Turcon[®] Varilip[®] PDR is capable of running without lubrication for long periods of time without adversely affecting their ultimate life. This not only allows the seal to be used in applications where the lubrication may be intermittent but it is also effective in dirt, dust and powder.

Custom designs

Higher speeds and pressure capabilities can be achieved with the use of custom designs.

Further information

Additional more detailed information on Turcon[®] Varilip[®] PDR can be found in the Trelleborg Sealing Solutions Turcon[®] Varilip[®] PDR catalog. This can be downloaded from the services section of the website at www.tss.trelleborg.com or a printed copy ordered from your local Trelleborg Sealing Solutions marketing company.

Design Guidelines

Housing

Turcon[®] Varilip[®] PDR is designed to meet global standards, including ISO 6194/1 and ISO 16589.

Turcon[®] Varilip[®] PDR requires an interference fit with the housing bore to provide adequate sealing of this interface. It also ensures that the seal remains in place when subjected to pressure, axial movement and induced torsion produced by the relative rotary motion of shaft to housing bore. The bore should be machined with an H8 diametric tolerance as detailed in the table below.

Turcon[®] Varilip[®] PDR seals should not be pushed into bores that were previously scored by the assembly of another component, such as a bearing. In these circumstances a larger seal outer diameter should be selected.

Surface finish of the bore is required to be $32 \mu in/0.8 \mu m$ Ra maximum. A sealant or adhesive should be used if the housing bore is split and an axial joint crosses the seal outer diameter or if surface finish requirements cannot be met. Alternatively a custom solution can be supplied with a rubber covering or O-Ring for OD sealing.

	Bore Diameter				ance
0\	ver	Т	То		H8
inch	mm	inch	mm	H8 (in)	(mm)
0.394	10	0.787	18	0.0011 -0.000	+0.027 -0
0.787	18	1.181	30	0.0013 -0.0000	+0.033 -0
1.181	30	1.969	50	0.0015 -0.000	+0.039 -0
1.969	50	3.150	80	0.0018 -0.000	+0.046 -0
3.150	80	4.724	120	0.0021 -0.000	+0.054 -0
4.724	120	7.087	180	0.0025 -0.000	+0.063 -0
7.087	180	9.843	250	0.0028 -0.000	+0.072 -0
9.843	250	12.402	315	0.0032 -0.000	+0.081 -0
12.402	315	15.748	400	0.0035 -0.000	+0.089 -0

Table V Housing Installation Data

Table VI Housing Design Data

Seal Width	< 0.394 inch 10 mm	> 0.394 inch 10 mm	
Min. bore	b + 0.0197	b + 0.0394	
depth (b)	b + 0.5 mm	b+ 1.0	
Chamfer length	0.028 to 0.04	0.047 to 0.06	
(c)	0.70 to 1.00	1.20 to 1.50	
Max. corner	0.0157	0.0157	
radius (r)	0.40	0.40	

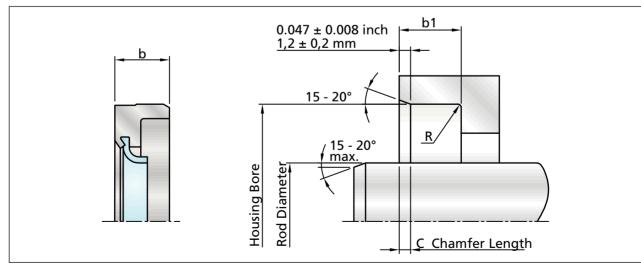


Figure 4 Housing Design Schematic

Shaft

For Turcon[®] Varilip[®] PDR the shaft should be machined to an h11 tolerance or greater, as detailed in the table below. The surface finish should be prepared by plunge grinding to avoid any machining lead that may act with the shaft rotation, potentially causing leakage.

The recommended surface finish for the shaft is 8-16 $\mu inch/$ 0.2 to 0.4 μm Ra.

	Shaft D	Tole	rance		
Ον	/er	Т	То		h11
inch	mm	inch	mm	(in)	(mm)
0.236	6	0.394	10	+0 -0.0035	+0 -0.090
0.394	10	0.787	18	+0 -0.0043	+0 -0.110
0.787	18	1.181	30	+0 -0.0051	+0 -0.130
1.181	30	1.969	50	+0 -0.0063	+0 -0.160
1.969	50	3.150	80	+0 -0.0075	+0 -0.190
3.150	80	4.724	120	+0 -0.0087	+0 -0.220
4.724	120	7.087	180	+0 -0.0098	+0 -0.250
7.087	180	9.843	250	+0 -0.0114	+0 -0.290
9.843	250	12.402	315	+0 -0.0126	+0 -0.320
12.402	315	15.748	400	+0 -0.0142	+0 -0.360

Table VII Shaft Installation Data

Shaft hardness in excess of 55 HRC is generally recommended for Turcon[®] Varilip[®] PDR, although softer shafts are permissible depending on pressure, speed and sealing lip material.

Titanium shafts should be avoided unless nitrided. Shafts with good chrome, nickel or zinc plating, properly finished, are acceptable depending on application. Certain ceramic coatings can also be used, although some grades can result in wear of the sealing lip due to their open structure.

In certain applications it may not be possible to provide a shaft with the necessary hardness, surface finish and corrosion resistance. Fitting a wear sleeve onto the shaft can solve this problem. If wear should occur, only the sleeve needs replacing. The surface finish of the sleeve should be as outlined above. Consideration should be given to adequate heat dissipation and effective sealing of the interface between the wear sleeve and the shaft.

Installation Requirements

Careful handling is important when installing Turcon[®] Varilip[®] PDR to avoid damaging the sealing lip.

Radii or lead-in chamfers must be machined on the end of the shaft if the seal is installed from the back. The end of the shaft must also be free from burrs, sharp corners or rough machining marks.

When installing the seal with the lip against the shaft end, a lead-in chamfer is required. Its smallest diameter must be smaller than the unstressed diameter of the sealing lip.

It is recommended that the angle of the shaft's leadin chamfer is as shallow as practical within the range given in the table below.

d1 (inch)	d1 (mm)	d1-d2 (inch)	d1-d2 (mm)
< 0.4	< 10	0.06	1.5
0.4 - 0.8	10 – 20	0.08	2.0
0.8 – 1.2	20 – 30	0.10	2.5
1.2 – 1.6	30 – 40	0.12	3.0
1.6 – 2.0	40 – 50	0.14	3.5
2.0 – 2.8	50 – 70	0.16	4.0
2.8 – 3.7	70 – 95	0.18	4.5
3.7 – 5.1	95 – 130	0.22	5.5
5.1 – 9.4	130 – 240	0.28	7.0
9.4 –11.8	240 – 300	0.43	11.0

Table VIII Shaft Lead-in Chamfer

To ensure correct orientation of the sealing lip, fitting of the seal on an installation cone before fitting is preferred.

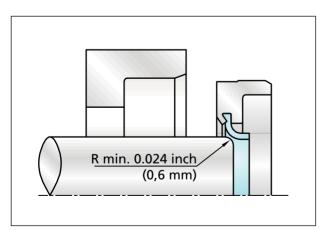


Figure 5 Installation of the sealing lip with the back to the shaft for pressurized application

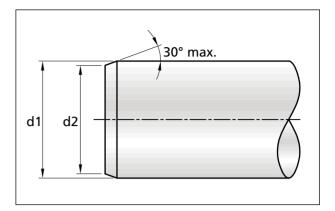


Figure 6 Shaft lead-in chamfer

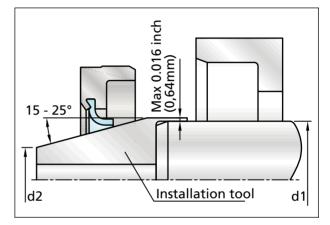


Figure 7 Fitting the sealing lip using an installation tool

Fitting should be performed in a swift movement to limit the time that the lip is formed above shaft size, reducing the amount of lip recovery needed.

Packaging

Single and small quantities of Turcon[®] Varilip[®] PDR seals will be supplied in blister packs with individual transport mandrels. These mandrels will pre-form the element to above its free diameter but below the intended shaft diameter. This assists in ease of installation while ensuring the element is not overstretched or damaged in transit.

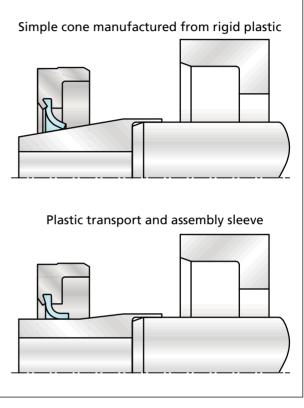
Larger quantities of Turcon[®] Varilip[®] PDR seals will be supplied in a tube-and-end cap configuration.

Storage

Turcon[®] Varilip[®] PDR seals require no special storage conditions and do not have a limited shelf life.

Rotary seals

Latest information available at www.tss.trelleborg.com Edition August 2011



Fitting Instructions

Investigations into premature failures have shown that significant numbers result from inappropriate installation techniques. By observing the following guidelines, such failures can be avoided.

- Assembly sleeves and fitting tools should be regularly checked for signs of damage.
- When supplied on mandrels the seals should not be removed from the mandrel until immediately prior to fitting. Seals supplied on cardboard mandrels should be removed in the direction so that the spiral paper overlay of the mandrel is not lifted.
- Turcon[®] Varilip[®] PDR seals should be assembled on the shaft in a non-lubricated (dry) condition to avoid contamination of the hydrodynamic feature if present.
- Care should be taken not to damage the outer diameter surface of the seal.
- Seals should be pressed squarely into the housing with the pressing-in force applied as close as possible to the outside diameter of the seal.
- If the seal contains a hydrodynamic feature on the sealing lip, ensure that it is correctly oriented in relation to the shaft's direction of rotation.
- Normal practice is to install the seal with the lip facing the medium to be sealed. The seal is reversed only when it becomes more important to exclude a medium than to retain it.

- Suitable sealants or adhesives may be used for improved sealing of the outer diameter in critical applications or for seal retention purposes.

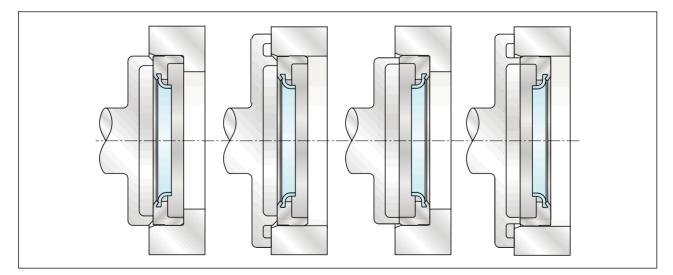


Figure 9 Assembly Techniques

Installation Recommendations

The following diagrams show installation recommendations for seal retention under conditions where there is pressure.

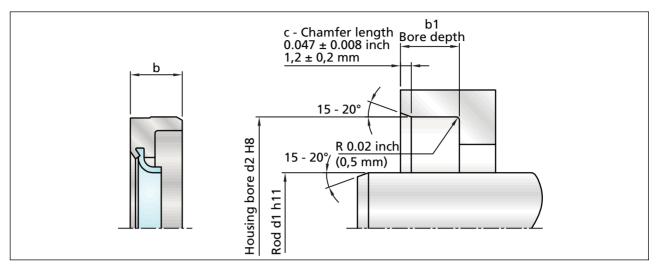


Figure 10 Installation drawing for pressure up to 73 psi/ 0.5 MPa

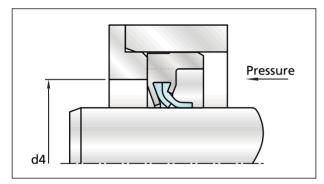


Figure 11 Installation for pressure from 73 psi/ 0.5 MPa up to 145 psi/ 1 MPa

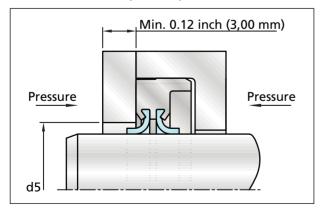


Figure 12 Installation type for fluid separation at pressures up to 73 psi/ 0.5 MPa

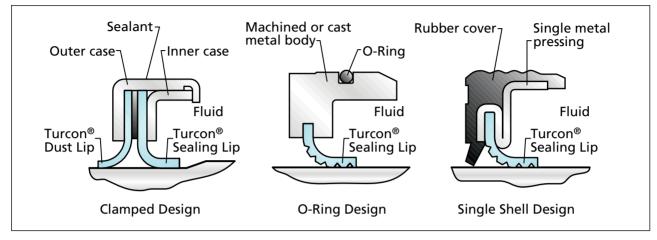
Post installation recommendations:

If painting the application, be sure to mask the seal. Avoid getting paint on the lip or the shaft where the lip rides. Also, mask any vents or drain holes, so they will not become clogged. Be sure to remove masks before operating unit.

If paint is to be baked or the mechanism is subjected to heat, seals should not be heated to temperatures higher than their materials can tolerate.

In cleaning or testing, do not subject seals to any fluids or pressures other than those for which the seals have been specified.

Extraction features such as tapped holes, internal threads or simple grooves can be included in custom Turcon[®] Varilip[®] PDR designs.


Latest information available at www.tss.trelleborg.com Edition August 2011

Turcon[®] Varilip[®] PDR – Special Designs

Apart from the standard range, Turcon[®] Varilip[®] PDR seals are available as special designs to satisfy the demands of specific applications. These can

accommodate non-standard housing and shaft sizes. The figures below show some of the special designs available.

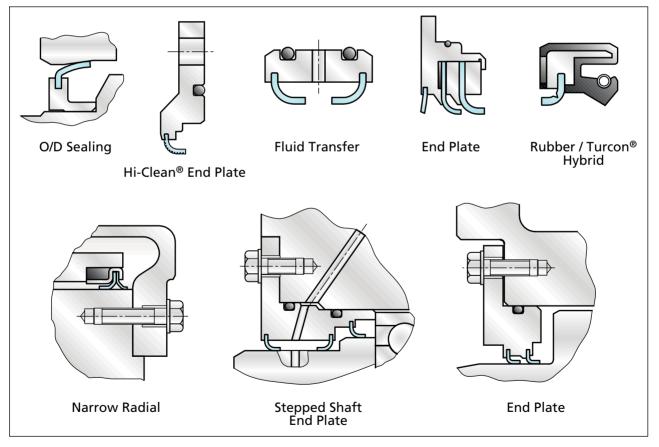
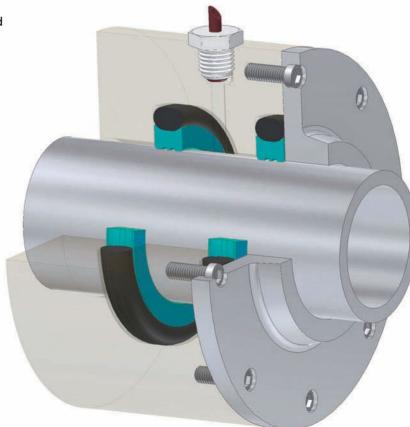



Figure 14 Turcon[®] Varilip[®] PDR – Special Designs

Features and benefits

- Available for internal and external sealing applications
- For use at high-pressure and low sliding speeds
- Low friction
- Stick-slip-free starting
- High abrasion resistance and dimensional stability
- Simple groove design, narrow space-saving groove dimensions
- Lubricant reservoir
- Available in a wide range of standard and custom sizes
- Unidirectional or bidirectional seal

Turcon[®] Roto Glyd Ring[®] is well suited for sealing swivel joints for movable actuators.

Description

The double-acting Turcon[®] Roto Glyd Ring[®] is used to seal rods, shafts, axles, bores, rotary transmission leadthroughs, journals and swivels with rotary, helical or oscillating movement. It consists of a seal ring in high-grade Turcon[®] material activated by an elastomer O-Ring.

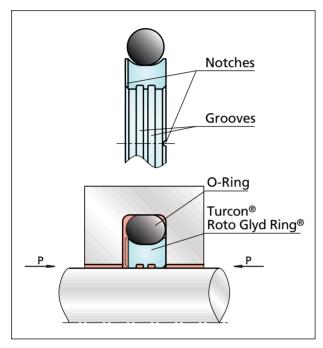


Figure 1 Turcon[®] Roto Glyd Ring[®]

The contact surface profile of the seal ring is specially designed for use at high-pressure and low sliding speeds.

Method of Operation

Depending on the cross section profile of the seal, the contact surface has one or two continuous machined grooves. These improve seal efficiency by increasing the specific surface load pressure against the sealed surface. They also form a lubricant reservoir and reduce friction.

In order to improve the pressure activation of the O-Ring, the Roto Glyd ${\rm Ring}^{\textcircled{}}$ has notched end faces as standard.

The rear face which holds the O-Ring has a concave form. This increases the surface and prevents the seal from turning with the rotating surface.

Technical Data

Operation pressure: Up to 4,000 psi/ 30 MPa

Speed:	Up to 6.5 ft/s/ 2.0 m/s
Temperature range:	-49°F to +428°F/ -45°C to +220°C depending on elastomer For applications at temperatures below -22°F/ -30°C contact your local Trelleborg Sealing Solutions marketing company.
Media:	Mineral oil-based hydraulic fluids, flame-retardant hydraulic fluids, environmentally-safe hydraulic fluids (bio-oils), phosphate ester, water and others, depending on the elastomer material For continuous operation at temperatures over +140°F/ +60°C, pressure and speed must be limited

Avoid combining extreme limits.

Mating Surface Materials

Sealing of applications with rotating movements requires very good mating surfaces. A minimum hardness of 55 HRC is recommended to a hardening depth of at least .012 in/ 0.3 mm.

Coated surfaces must be finished with particular care:

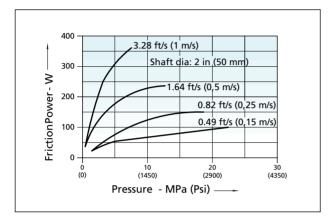
- Chrome-plating must not peel off in service.
- Good heat dissipation must be assured by the coating.

Unhardened mating surfaces should have a Brinell hardness of at least 1,700 N/mm².

Frictional Power

Guide values for frictional power can be determined from the graph below. They are shown as a function of the sliding speed and operating pressure for a shaft diameter of 1.968 in/ 50 mm with an oil temperature of $+140^{\circ}F/$ $+60^{\circ}C$. At higher temperatures, these application limits must be reduced.

Formula for other diameters: p \simeq p50 x ($\frac{d}{50 \mbox{ mm}}$) [W]



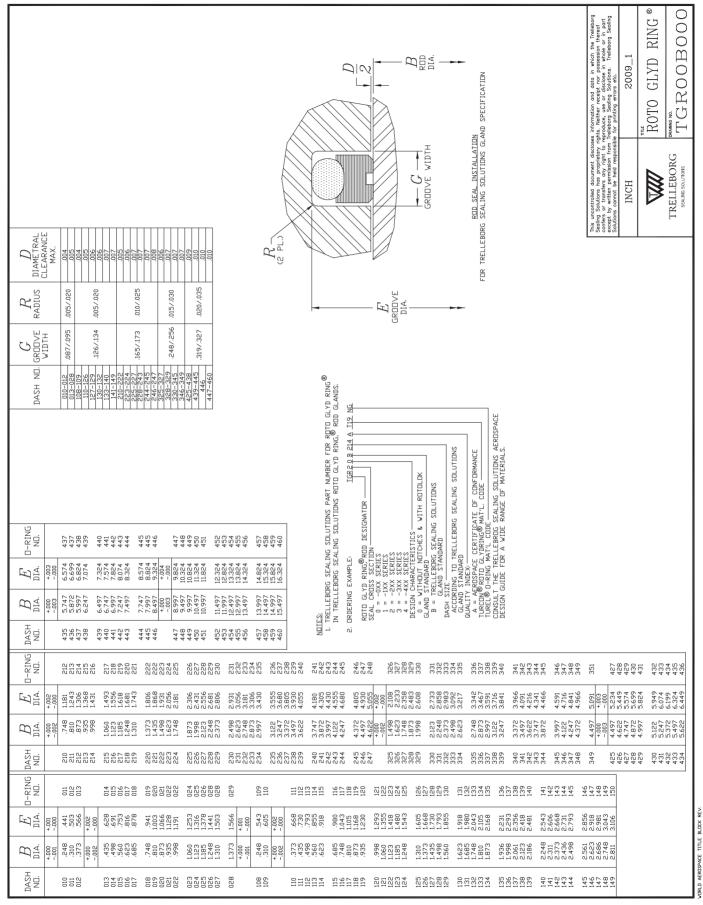
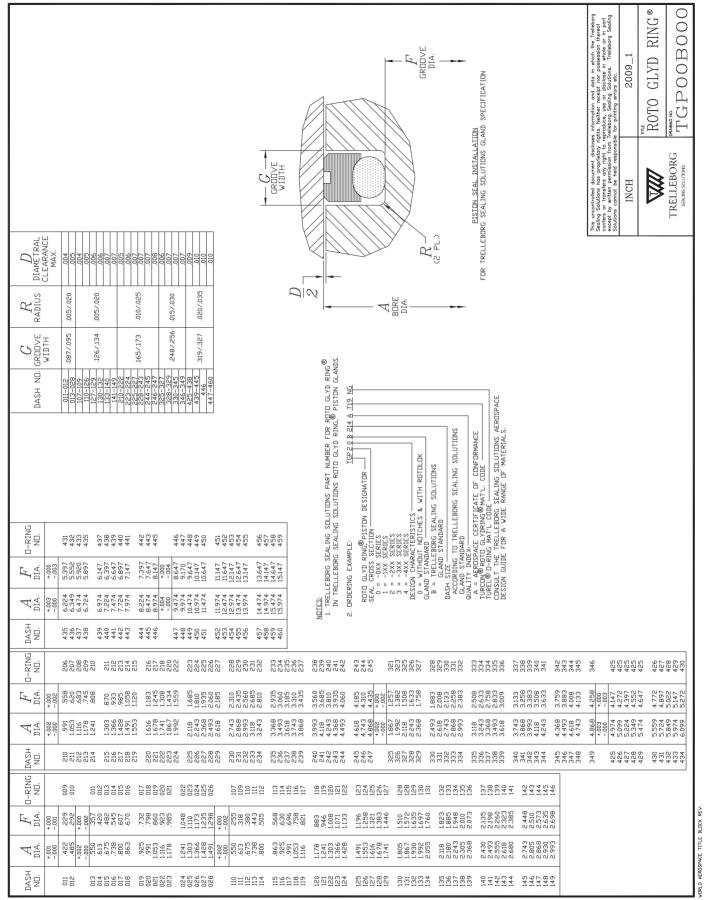

Figure 2 Friction for Turcon[®] Roto Glyd Ring[®]

Table I	Turcon [®]	Roto	Glyd	Ring®
---------	---------------------	------	------	-------

Cross Section	Description	Part Number	Gland Standard
	Turcon [®] Roto Glyd Ring [®] Rod	TGR_0B	TSS Gland Rod per AS4716
	Turcon [®] Roto Glyd Ring [®] Bore	TGP_0B	TSS Gland Bore per AS4716



Turcon[®] Roto Glyd Ring[®]

The drawings are also available on the CD supplied with this manual or they can be downloaded from www.tss.trelleborg.com.

Turcon[®] Roto Glyd Ring[®]

Latest information available at www.tss.trelleborg.com Edition August 2011

Other elements used in sealing configurations

Polymer bearings	235
Turcon [®] Excluder [®] and Scrapers	249
Turcon [®] Face Seals	267
O-Rings	281

Features and benefits

- Prevent metal-to-metal contact
- Low friction
- Resist side loading
- Weight savings potential of 4:1 compared to metal bearings, depending on material and configuration selection
- Cost-effective
- High load bearing capacity, both static and dynamic operation
- Eliminate local stress concentrations
- Eliminate hydrodynamic problems in the guide system
- Very wear-resistant, providing long service life
- Eliminate galling between components
- Good friction characteristics
- Damp mechanical vibrations
- Protect against diesel effect
- Low maintenance costs
- Easy installation

Illustration shows hydraulic cylinder fitted with Turcon® Slydring® and Wear Rings.

Description

The purpose of polymer bearings is to guide the piston and rod of a working cylinder, absorbing any transverse forces which may occur. They prevent metal-to-metal contact, optimizing the performance of the sealing system.

In the past the use of bearings was limited in aerospace applications. This was due to limitations imposed by gland standard AS4716 and the minimum required clearance gaps necessary to minimize seal extrusion. To fit polymer bearings, hardware clearance gaps need to be larger than specified in the standard.

However, due to the trend towards higher hydraulic pressures in aerospace systems and the resulting increased side loads, the use of bearings has become necessary in an increasing number of applications. They are needed to protect primary seal components and hardware so optimum sealing performance and service life can be achieved.

Polymer bearings offer major benefits over traditional metal bearings, in particular to help meet the weight reduction goals of today's aerospace designers. On average, depending on material and configuration, a polymer bearing is a quarter of the weight of a metal one.

Cost-effective, polymer bearings are very wear-resistant, providing long service life. They offer high load bearing capacity in static and dynamic operation, have good friction characteristics and damp mechanical vibrations. They also eliminate local stress concentrations, galling between components and hydrodynamic problems in the guide system. In addition, they protect against the diesel effect where combustion of pockets of oil vapor caused by rapid changes of pressure can damage seals.

Designs

Four different types of bearing materials are available depending on application demands:

- Highly wear-resistant, low-friction, specially modified Turcon[®] PTFE based materials. For low to medium loads. Supplied as the Trelleborg Sealing Solutions proprietary Slydring[®].
- **Orkot**[®] fabric composite materials for high loads and transverse forces. Supplied as Wear Ring.
- **Zurcon**[®] high-modulus thermoplastic provides long service life in high loads and temperatures. Supplied as Wear Ring.
- **HiMod**[®] high-modulus thermoplastic for use in extreme working conditions. Supplied as **Slydring**[®].

Bearing Features

Though bearings appear to be simple in design, their function of preventing metal-to-metal contact within a sealing system is complex. Selection of the correct material and configuration is critical to ensure optimized performance and service life.

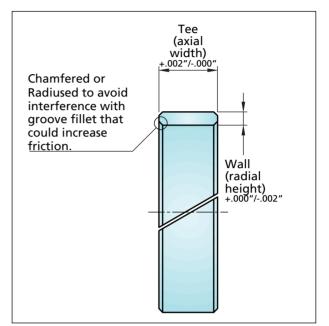


Figure 1 Bearing Features. Tolerance is for reference only.

Table I Turcon[®] Slydring[®]

Piston and Rod Bearing						
Cross Section		Description Part Number		Available AS4716 Dash Sizes (1)		
		Turcon [®] Slydring [®] 1/32 Thick, Maximum .032" / 0.79 mm Wall	GP0_X (S34545)	006-012, 110-116, 137, 210-219, 222, 328, 339, 347		
	Piston	Turcon [®] Slydring [®] 1/16 Thick, Maximum .063" / 1.59 mm Wall	GP0_W (S34546)	110-116, 210-222, 325-349		
		Turcon [®] Slydring [®] 3/32 Thick, Maximum .094" / 2.38 mm Wall	GP0_Y (S34547)	328, 334-339, 425-449, 455		
		Turcon [®] Slydring [®] 1/32 Thick, Maximum .032" / 0.79 mm Wall	GR0_X (S34548)	006-011, 110-115, 210-222		
	Rod	Turcon [®] Slydring [®] 1/16 Thick, Maximum .063" / 1.59 mm Wall	GR0_W (S34549)	110-115, 210-221, 325-349		
		Turcon [®] Slydring [®] 3/32 Thick, Maximum .094" / 2.38 mm Wall	GR0_Y (S34550)	337-348, 425-449		

Notes:

1) Available dash numbers are limited by Turcon[®] Slydring[®] nominal wall thickness and AS4716 bore or rod diameter - where common rod or bore sizes are covered by different cross sections numbers but are the same dimensionally, i.e. AS4716-223 and AS4716-325 are both for a bore diameter of 1.867 inches / 47.42 mm.

Wear Ring in bearing material Orkot[®] and Zurcon[®] and Slydring[®] in bearing material HiMod[®] use special part numbers due to tolerance and temperature variations. For other sizes, bearing widths and depths not in the catalog consult your local Trelleborg Sealing Solutions marketing company.

Table II Selection Criteria for bearings

	F :U	Technica	l Data	A	
Material	Filler	Temperature	Velocity	Application	
Turcon [®] T10	Carbon and graphite-filled PTFE	-320 to +500°F -196 to +260°C	49 ft/s 15 m/s	Good wear resistance and low friction. A bearing material used in poorly lubricated applications. In the Americas use Turcon [®] T11 in the part number.	
Turcon [®] T19	Mineral fibers and Molydenum Disulfide (MoS ₂)	-320 to +500°F -196 to +260°C	49 ft/s 15 m/s	Good deformation resistance and low friction. Well suited for use in flight controls and utility actuators.	
Turcon® T46	Bronze-filled medium PTFE	-320 to +500°F -196 to +260°C	49 ft/s 15 m/s	Excellent deformation resistance and stability. Used for applications above 5,800 psi/ 40 MPa. Not recommended for non-lubricated applications.	
Orkot [®] C380*	Polyester resin, polyester fine mesh and PTFE	-328 to +266°F -200 to +130°C	3.3 ft/s 1 m/s	High wear resistance with good sliding properties. For use in red oil only.	
Orkot [®] C324*	Vinylester resin and Nomex [®] fine mesh	-328 to +482°F -200 to +250°C	3.3 ft/s 1 m/s	Developed for high- temperature applications. For use in phosphate ester. Test Report R1081 available on request.	
Zurcon [®] Z43 [*]	PEEK™, PTFE and carbon	-65 to +500°F -54 to +260°C	16 ft/s 5 m/s	For high-temperature and pressure service. Good chemical compatibility. Can be used for structural parts, such as piston heads.	
HiMod [®] 914*	PEEK™, thermoplastic, carbon and PTFE	-65 to +500°F -54 to +250°C	16 ft/s 5 m/s	Self-lubricating, chemical- resistant bearing developed for the most severe and critical applications.	
HiMod [®] 924*	PEEK and carbon fiber	-65 to +500°F -54 to +250°C	8 ft/s 2.4 m/s	High-temperature, high- modulus material with low thermal expansion, high strength and high compressive properties.	

* Require a special part number

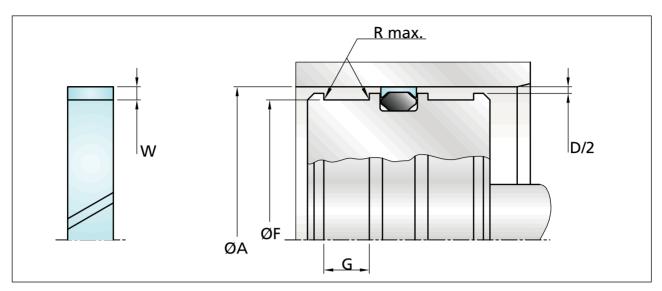


Figure 2 Sealing system with bearings - piston

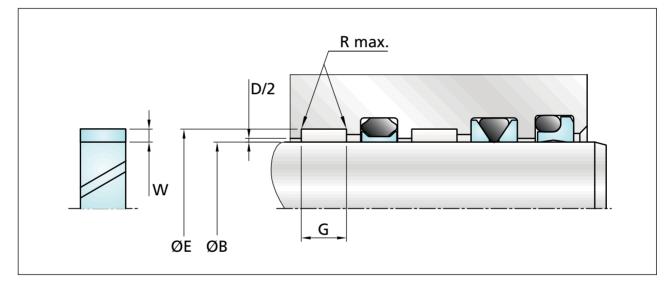


Figure 3 Sealing system with bearings - rod

Note: Wear Ring in Orkot[®] and Zurcon[®] require special part numbers due to tolerance and temperature variations.

Calculating the Proper Bearing Exposure

The bearing running clearance, or bearing exposure, is the least understood and the most frequently encountered problem in the design of polymer bearings. Due to the difference in thermal behavior during operation of polymer materials, they require larger running clearances than those recommended for metal bearings. Insufficient running clearances are often the cause of polymer bearing failures, so care should be taken in specifying these.

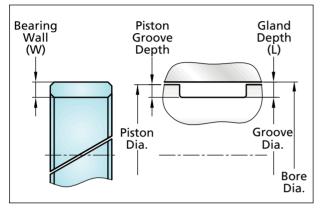


Figure 4 Bearing Exposure Variables

It is recommended that unless side load is extremely low, start with a bearing exposure of .005 inch/ 0.127 mm minimum.

As a guide:

Piston groove depth maximum equals piston diameter maximum minus groove diameter minimum.

Piston groove depth minimum equals piston diameter minimum minus groove diameter maximum.

Bearing exposure minimum equals bearing wall minimum minus piston groove depth maximum.

Bearing exposure maximum equals bearing wall maximum minus piston groove depth minimum.

To ensure that bearing exposure is correctly specified consult your local Trelleborg Sealing Solutions marketing company.

Calculate Bearing Length

A rough estimate of the number and width of the bearings required within an application can be calculated from the formula in the figure below.

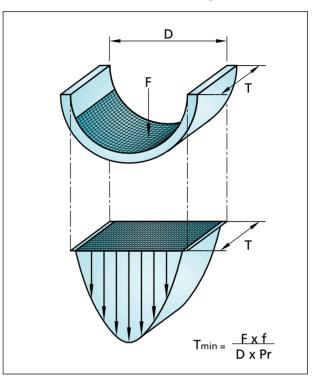


Figure 5 Bearing T

Where:

- F = Maximum radial load
- f = Safety factor
- D = Rod/Bore diameter
- Pr = Permissible dynamic load

Running Velocity

Bearing surface speed is calculated as follows:

For rotary applications: - V = (D x π x RPM)/12

For reciprocating applications: - $V = (LS \times C \times 2)/12$

Where:

V = Velocity

- D = Dynamic diameter
- LS = Length of stroke
- C = Cycles per minute

Multiply V by the system pressure to get PV.

Latest information available at www.tss.trelleborg.com Edition August 2011

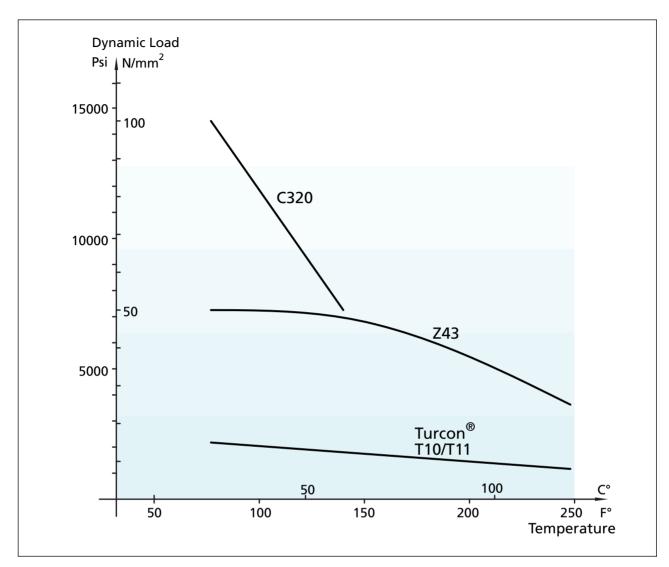
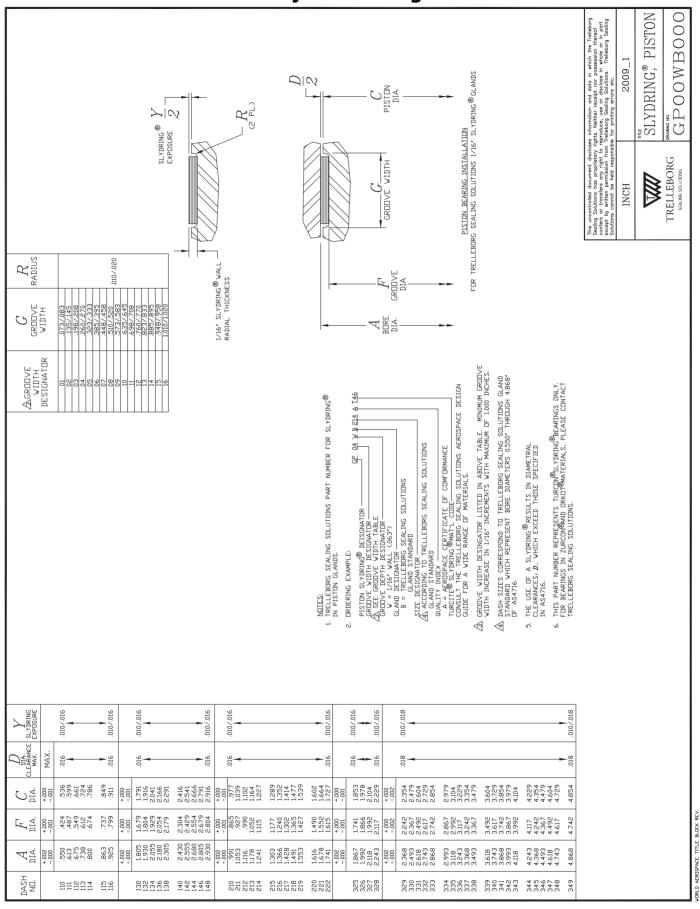
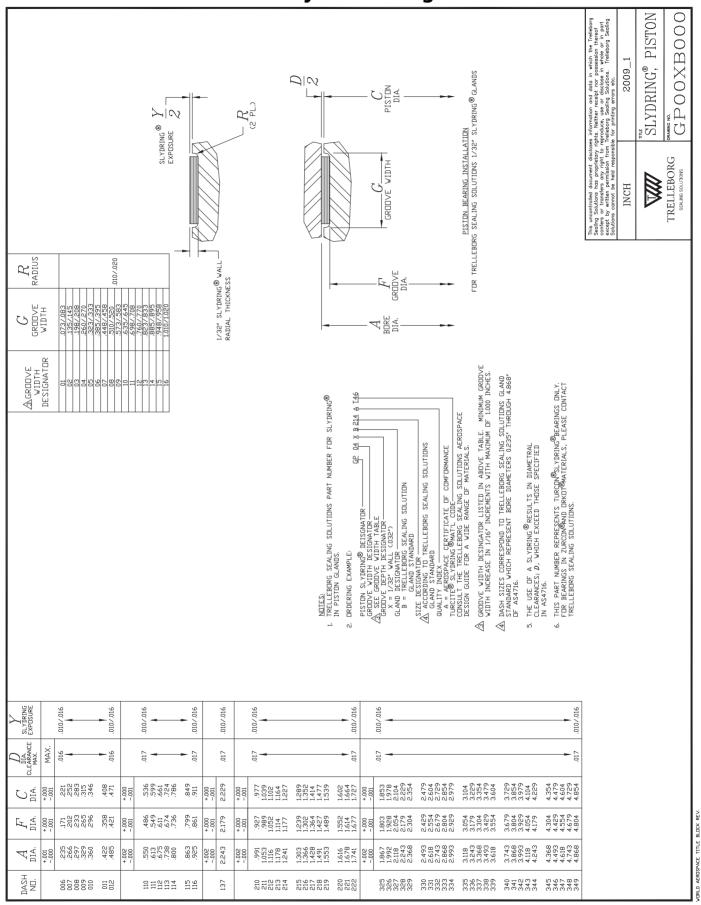
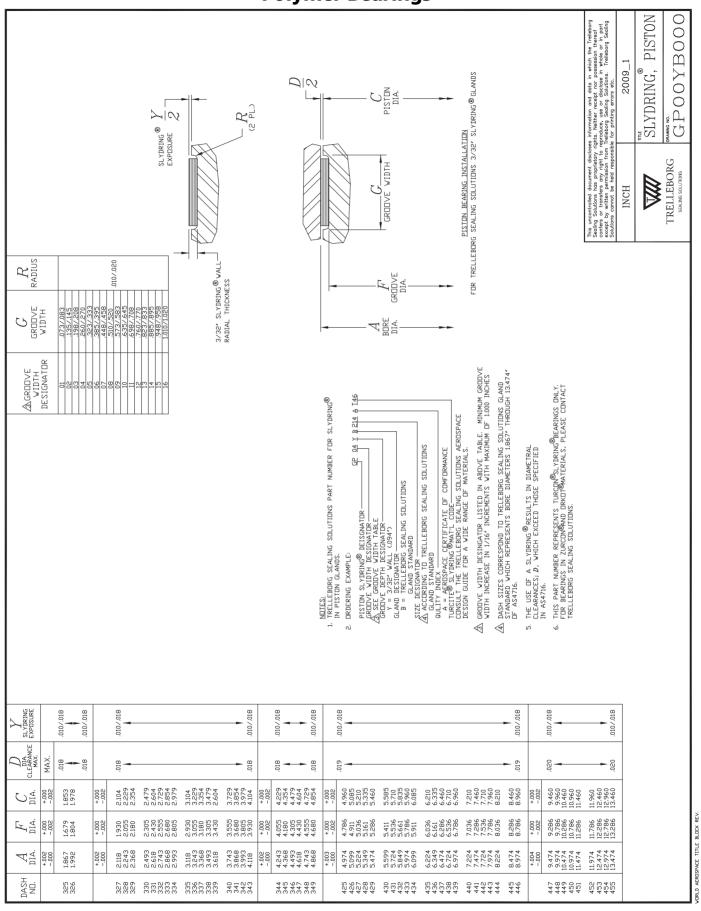
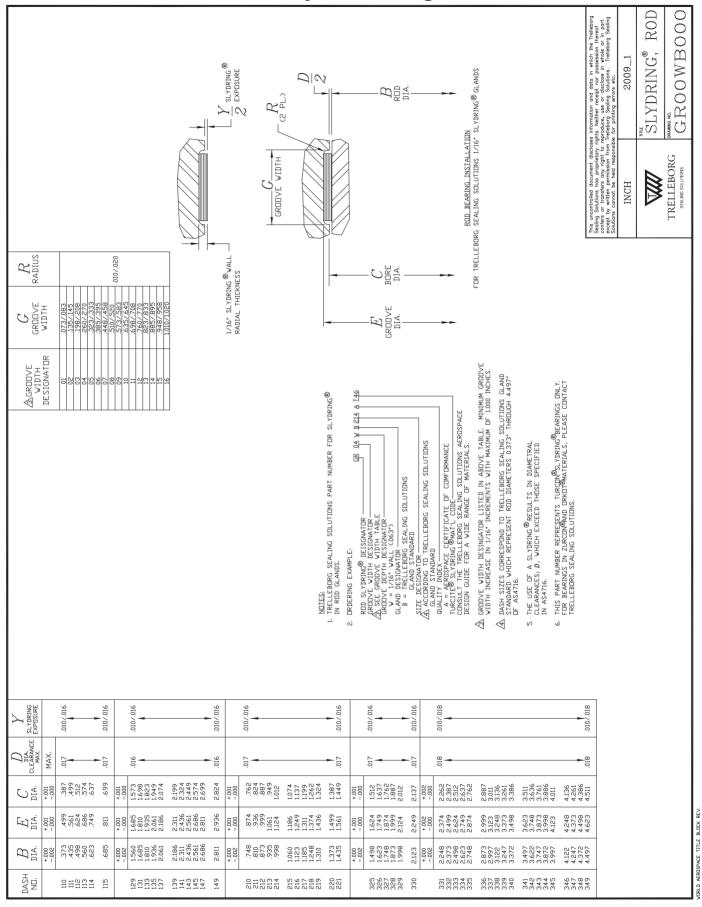
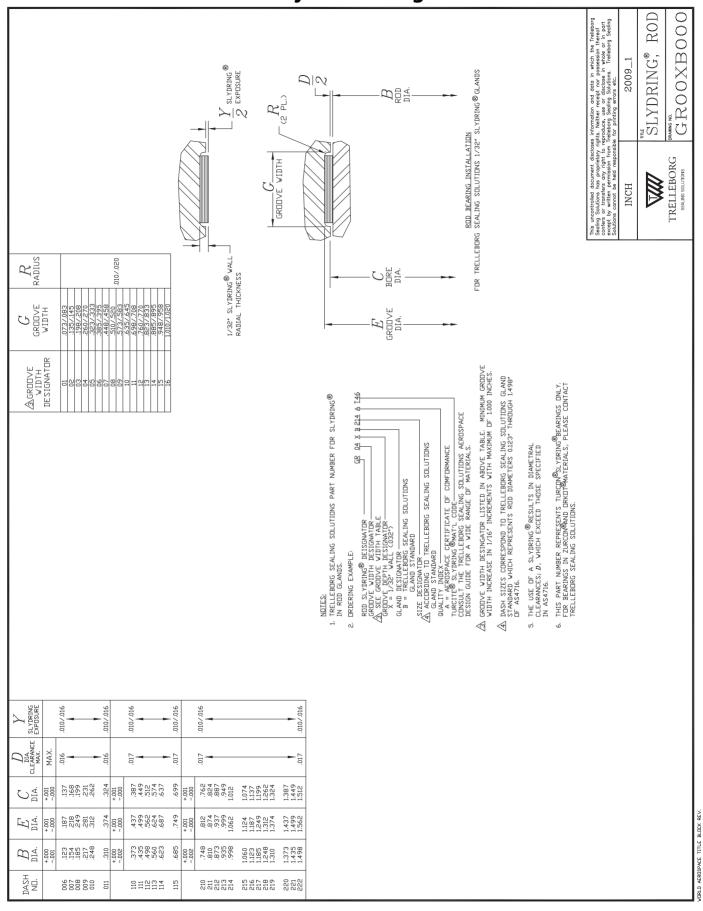




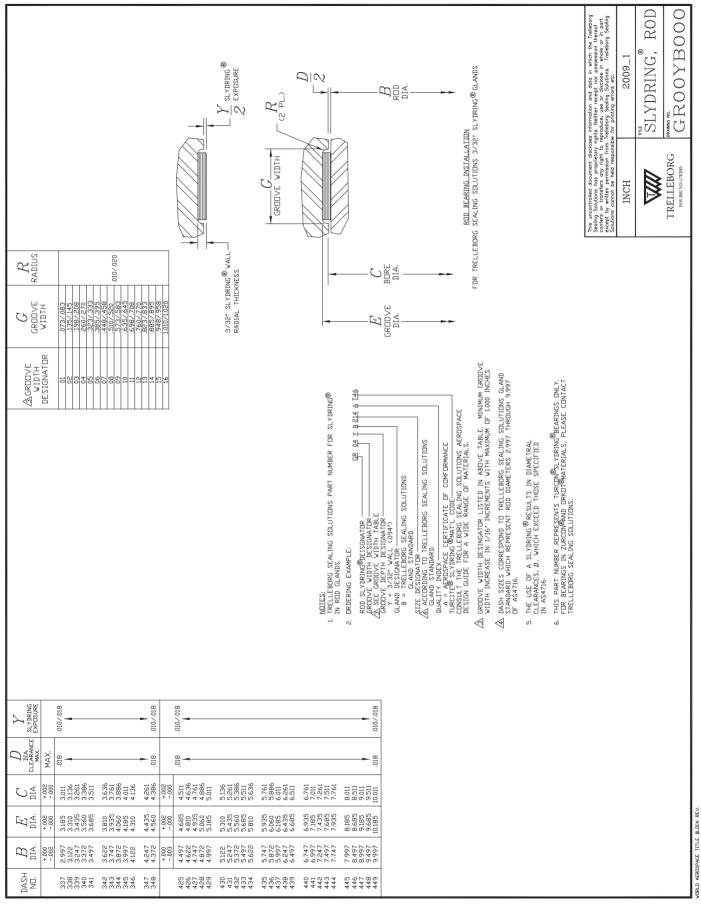
Figure 6 Permissible dynamic load bearing materials





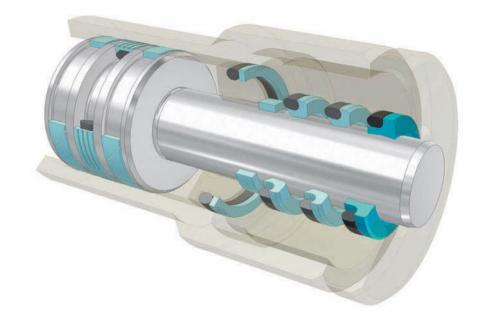
243


Other elements



244

Other elements



Latest information available at www.tss.trelleborg.com Edition August 2011

Features and benefits

- Prevent ingress of contaminants into sealing systems
- Protect sealing systems from damage by contaminants
- Can act as secondary sealing elements
- Can be designed to vent interstage pressure
- Scrapers can be matched to specific applications and gland sizes
- Eliminate rod scoring
- Low-friction
- Long service life
- Replace metallic scrapers

The Turcon[®] Excluder[®] DC shown here is a well proven scraping device that protects the sealing system from ingress of dirt and sand.

Latest information available at www.tss.trelleborg.com Edition August 2011

Description

Scrapers are elements used in sealing configurations, usually consisting of a Turcon[®] PTFE based ring and elastomer O-Ring. Installed in hydraulic cylinders, they are designed to scrape dirt, foreign particles, chips or moisture from the piston rods as they retract into the system. This prevents contamination of the hydraulic medium that could damage wear rings, seals and other components.

Single-acting scrapers keep contamination from the outside. Double-acting scrapers also scrape off residual fluid film. They minimize the ingression of small particles into the system and act as a secondary seal, avoiding external leakage.

Trelleborg Sealing Solutions offers a wide range of scrapers. Specifically recommended for aerospace applications is Turcon[®] Excluder[®], the Trelleborg Sealing Solutions proprietary design of double-acting scraper.

In addition, for systems with extreme working conditions, spring-energized scraper Turcon[®] Variseal[®] M2S can be specified. As its operating performance is not limited by an elastomer element, it offers a wide temperature range and optimal chemical resistance.

Method of Operation

The Turcon[®] PTFE based element within the scraper or Turcon[®] Excluder[®] configuration performs the scraping function. The elastomer O-Ring (or spring in Turcon[®] Variseal[®] M2S) maintains the pressure of the scraper lips against the sliding surface and can compensate any deflections of the piston rod.

The scraper should be considered an integral part of a sealing system within hydraulic systems. Incorrect selection can result in the migration of contamination into a system, potentially causing damage to wear rings, seals and hardware components.

An axial notch can be added to the inner scraping lip of a double-acting scraper. This provides a path to vent any interstage pressure to the outside while still retaining the double-acting scraper effect. See Turcon[®] Excluder[®] DC section.

Note on Ordering

Any standard scraper configuration in this catalog containing an elastomer O-Ring part can be supplied as a complete seal set.

Older designs no longer contained in this catalog continue to be available. For all new applications we recommend use of the types shown in this catalog.

Other combinations of Turcon[®] materials and special designs can be developed and supplied for specific applications in sizes up to 10 feet/ three meter diameter, provided there is sufficient volume demand. Sizes above this are available for specific scraper types.

Design Recommendations

When installing scrapers in applications where interstage pressure may occur the distance between seal groove and scraper groove L should exceed groove depth x. See figure below. There should also be provision for an oil reservoir to collect the oil returned to the hydraulic system by the seal.

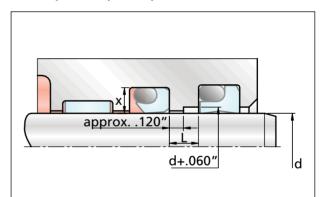


Figure 1 Recommendation for hardware design in applications when there may be interstage pressure

Gland Standard	Standard Type	TSS Trade name	Profile	Configuration	Part Number	Primary Application Area
MS33675		DC Scraper Ring		Scarf-cut, garter-spring- energized	WM65	Not recommended for new designs
111533075	-	Turcon [®] Excluder [®] DC Series E		Continuous, energized with an elastomer O-Ring	WE65	Light duty, space saving design
TSS Groove	-	Turcon [®] Excluder [®]		Continuous, energized with	WE25_B	Flight controls and utility actuators
		DC		an elastomer O-Ring	WE25_G	
AS4716	0 BU width Glands ¹⁾	Turcon [®] Variseal [®] M2S		Spring- energized	RVC_NM	Applications with a wide temperature range, large hardware deflection or aggressive chemicals
AS4088	-	Turcon [®] Excluder [®] AS		Continuous, energized with an elastomer O-Ring	WE670B	Heavy duty general applications
	I	Turcon [®] Excluder [®] AS		Continuous, energized with an elastomer O-Ring	WE710B	Landing gear applications
AS4052 Rev. B	II	Turcon [®] Variseal [®] M2S		Spring- energized	RVD_0B	Landing gear applications. Use where there is a large hardware deflection or aggressive chemicals

Table I Turcon[®] Scrapers and Excluders[®] with Aerospace Gland Specification

Profiles in color are recommended configurations

¹⁾ Scrapers are designed to fit in AS4716 zero back-up width grooves. Certain dimensions such as the downstream sidewall are modified to allow optimum operating performance for scrapers.

Turcon[®] Excluder[®] DC

Description

In Turcon[®] Excluder[®] DC the gland has been altered to accommodate a larger cross section O-Ring for better activation of the scraping lips. It optimizes the configuration's ability to exclude contamination without the restrictions and limitations of the MS 33675 gland dimensions.

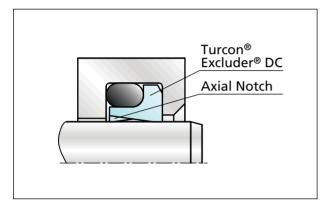


Figure 2 Turcon[®] Excluder[®] DC with axial notch

Due to the heavy cross section of the Turcon[®] element on the downstream side, Turcon[®] Excluder[®] DC will accept a significant back-pressure without being extruded out of the groove.

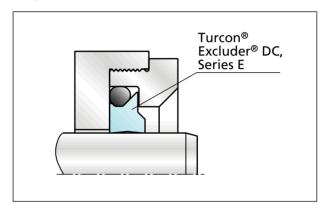
If high back-pressure is expected, we recommend use of Turcon[®] Excluder[®] DC with an axial notch.

Groove specification

AS4716 zero backup width gland. Open/split grooves are recommended for diameters smaller than 1.4 inch/ 35 mm (see page 257, 258).

Technical Data

Speed: 49.2 ft/s/ 15 m/s


Temperature range: -65°F to +500°F/ -54°C to +260°C depending on elastomer material

Media: All commonly used aerospace fluids depending on elastomer

Turcon[®] Excluder[®] DC Series E

Description

Turcon[®] Excluder[®] DC Series E is optimized for MS 33675 gland dimensions. The configuration is for relatively light duty and it is not recommended for new designs. The original virgin PTFE split Ring spring-energized scraper is not recommended.

If back-pressure is expected, we recommend use of Turcon[®] Excluder[®] DC with an axial notch.

Groove specification

MS 33675. Open/split grooves are recommended for diameters smaller than 1.4 inch/ 35 mm (see page 263).

Technical Data

Speed:	49.2 ft/s/ 15 m/s
Temperature range:	-65°F to +500°F/ -54°C to +260°C depending on elastomer material
Media:	All commonly used aerospace fluids depending on elastomer

Turcon[®] Excluder[®] AS

Description

The three versions of Turcon[®] Excluder[®] AS are designed for AS4088 and AS4052 Type I glands. The O-Ring is located over the inside sealing lip, providing an excellent secondary sealing function. The outside wall of Turcon[®] Excluder[®] AS is the full depth of the groove, meaning it can effectively scrape dust, sand and ice.

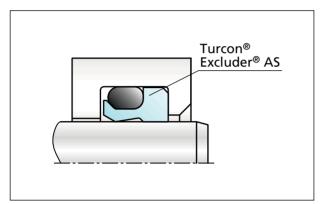
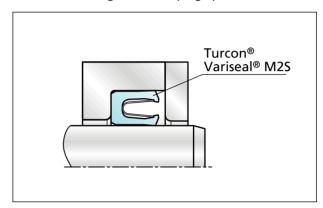


Figure 4 Turcon[®] Excluder[®] AS

Turcon[®] Excluder[®] AS per AS4088 standard, is a heavy duty scraper for general use (see page 259). A design for AS4052 Rev. B Type I for use in landing gear applications is shown on page 260 and page 262.

Groove specification

AS4716 zero backup width gland. Open/split grooves are recommended for diameters smaller than 1.4 inch/ 35 mm.


Technical Data

Speed:	49.2 ft/s/ 15 m/s
Temperature range:	-65°F to $+500°F/ -54°C$ to $+260°C$
	depending on elastomer material
Media:	All commonly used aerospace fluids depending on elastomer

■ Turcon[®] Variseal[®] M2S Scraper

Description

Turcon[®] Variseal[®] M2S is a single-acting seal/scraper with an asymmetric seal profile. The dynamic lip has an optimized heavy profile. This offers long service life and a good scraping effect, even in highly viscous media. The U-shaped corrosion resistant spring provides consistent loading of the scraping lip.

Figure 5 Turcon[®] Variseal[®] M2S

Turcon[®] Variseal[®] M2S has unlimited shelf-life and a very wide temperature range

A Hi-Clean version is available where the spring cavity is filled with silicone. This prevents contaminant lodging in the spring cavity.

Groove specification

MIL-G-5514F/AS4716 and ISO 3771 (see page 255, 256). The seal can only be installed to a limited extent in closed grooves. Refer to the Installation & Hardware Guidelines (page 293).

A version for AS4052 Rev. B Type II is shown on page 261.

Technical Data

Speed:	Reciprocating up to 49.2 ft/s/ 15 m/s Turning up to 1.65 ft/s/ 0.5 m/s
Temperature	: -94°F to +500°F/ -70°C to +260°C
Media:	Typically all fluids with medium to hig

Media: Typically all fluids with medium to high viscosity and media containing hard particles

Relative Sizes of Cross Sections

Turcon[®] Excluder[®] DC

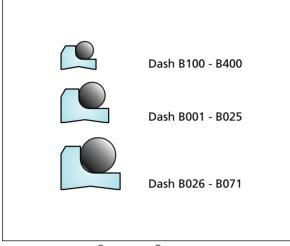


Figure 6 Turcon[®] Excluder[®] DC

Turcon[®] Excluder[®] DC, Series E

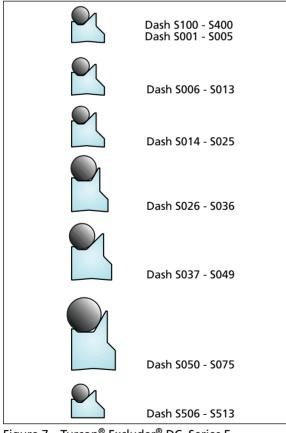
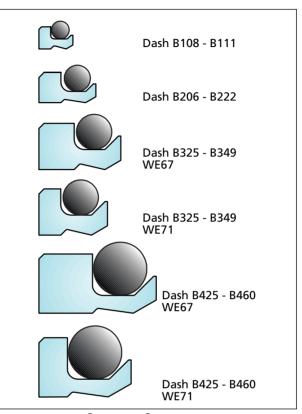
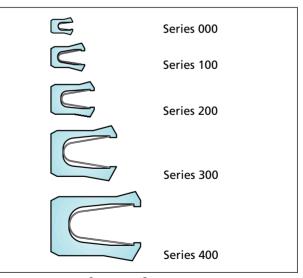
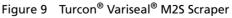
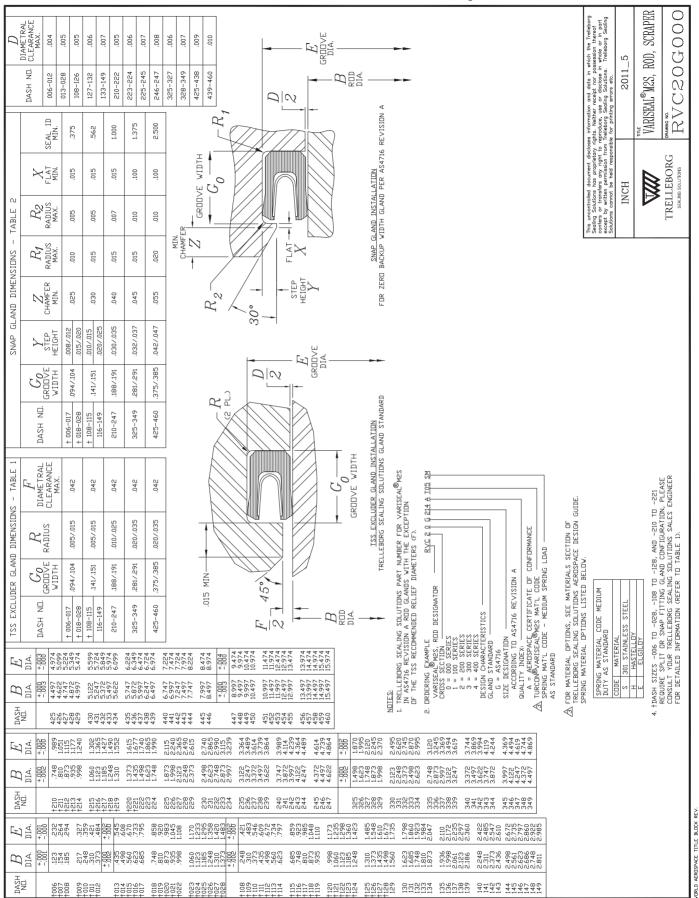
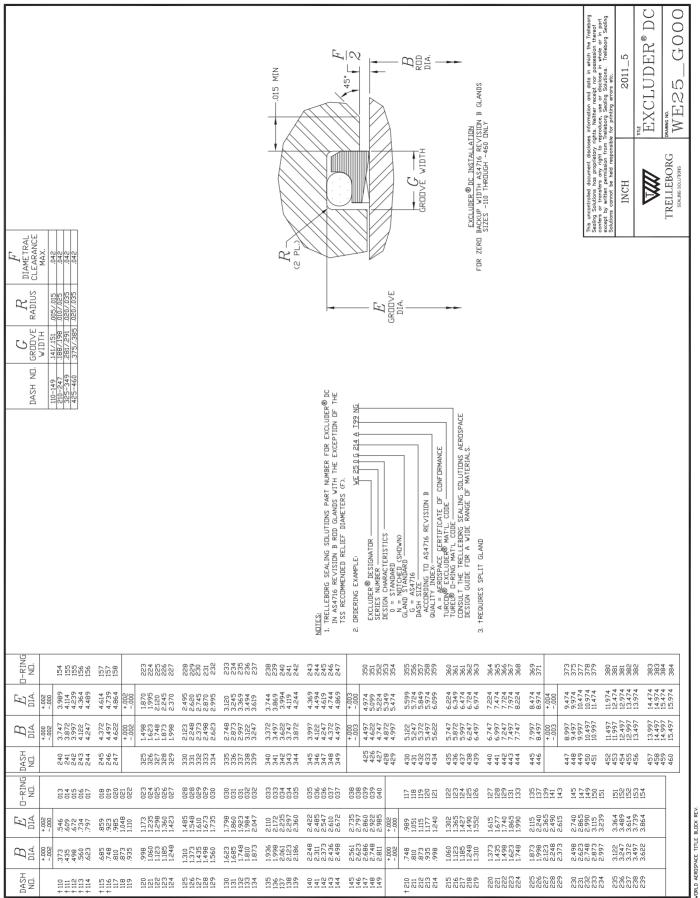
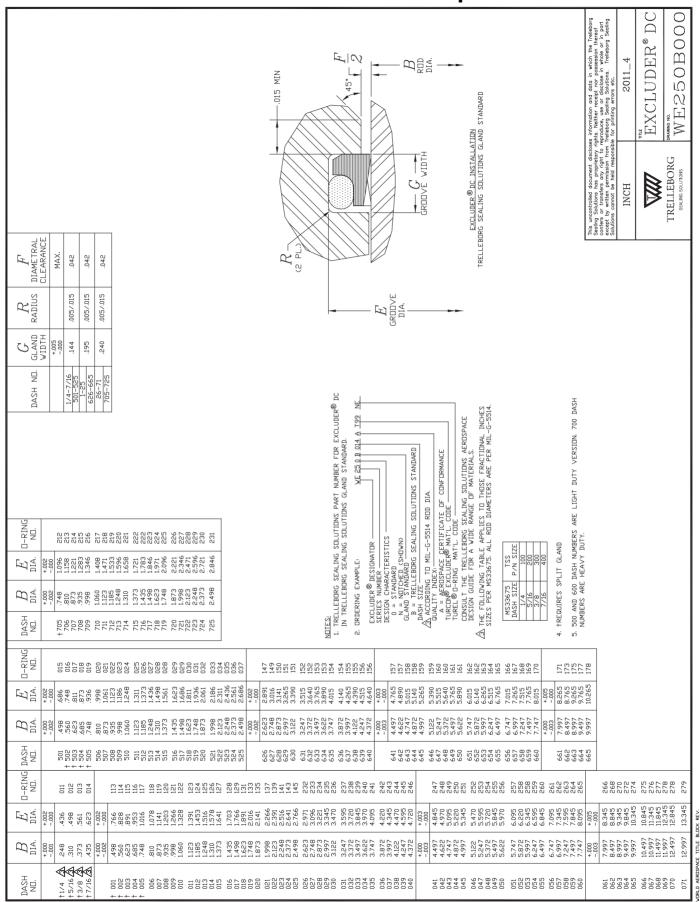


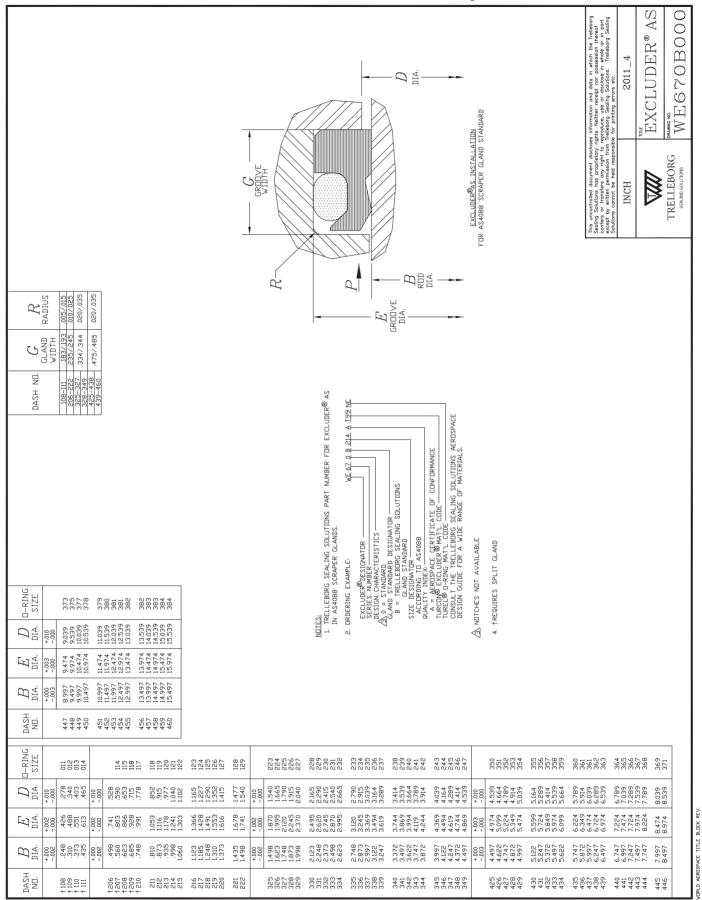
Figure 7 Turcon[®] Excluder[®] DC, Series E

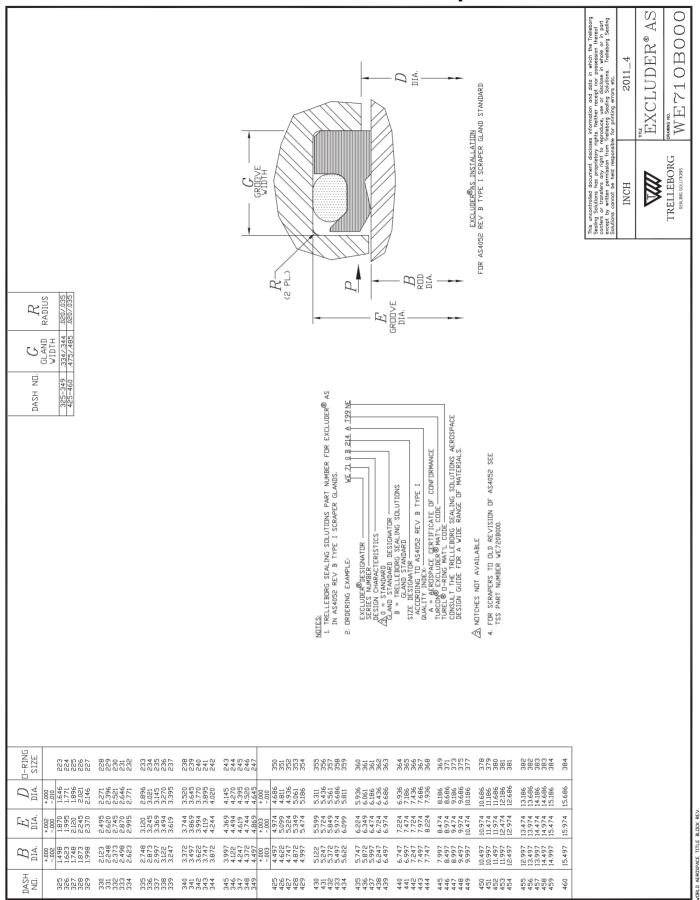




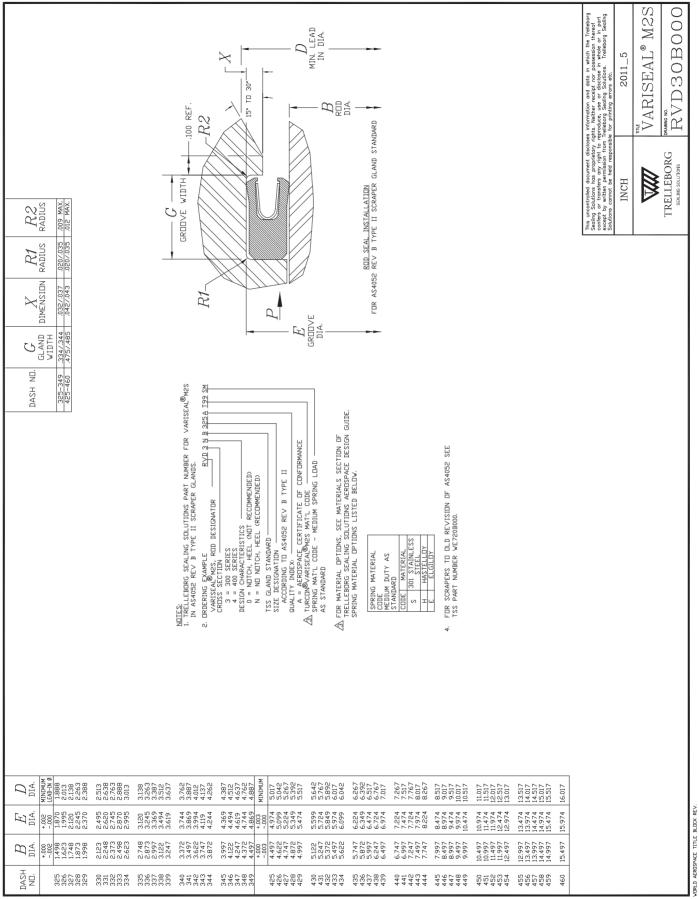

Figure 8 Turcon[®] Excluder[®] AS

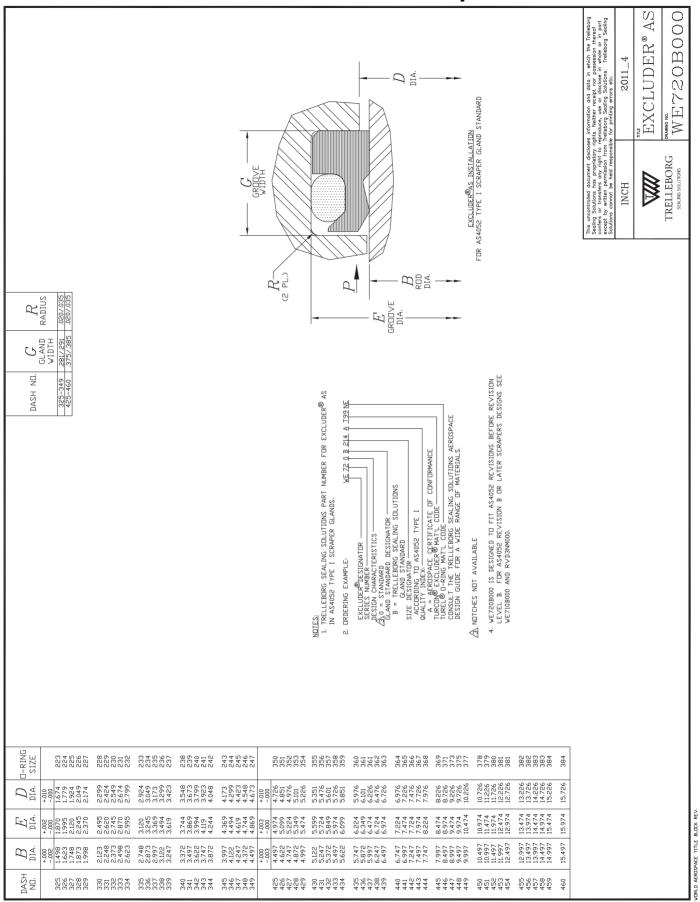

Turcon[®] Excluder[®] AS

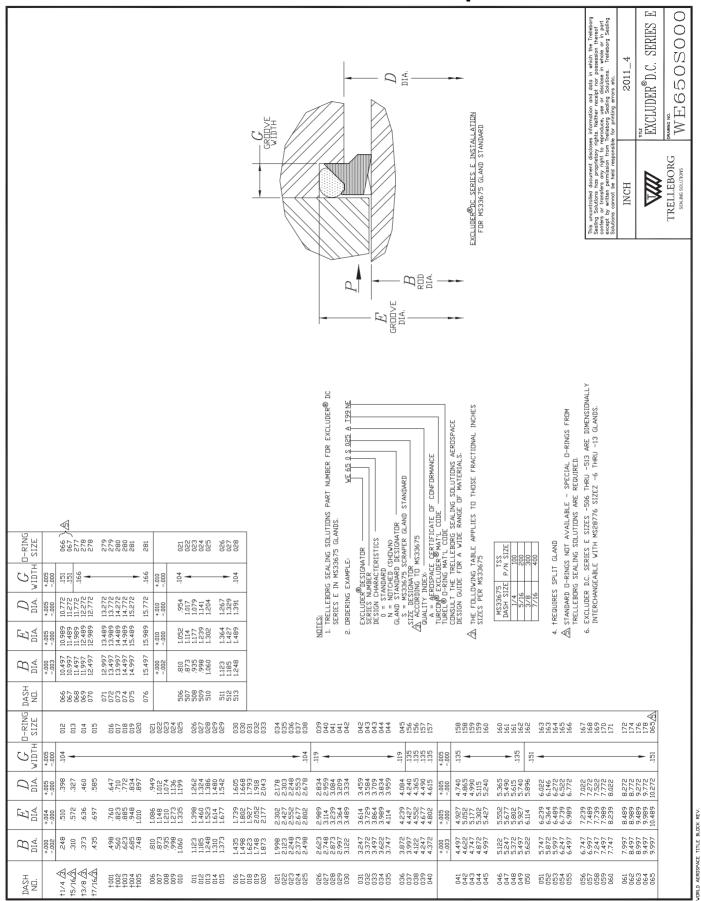


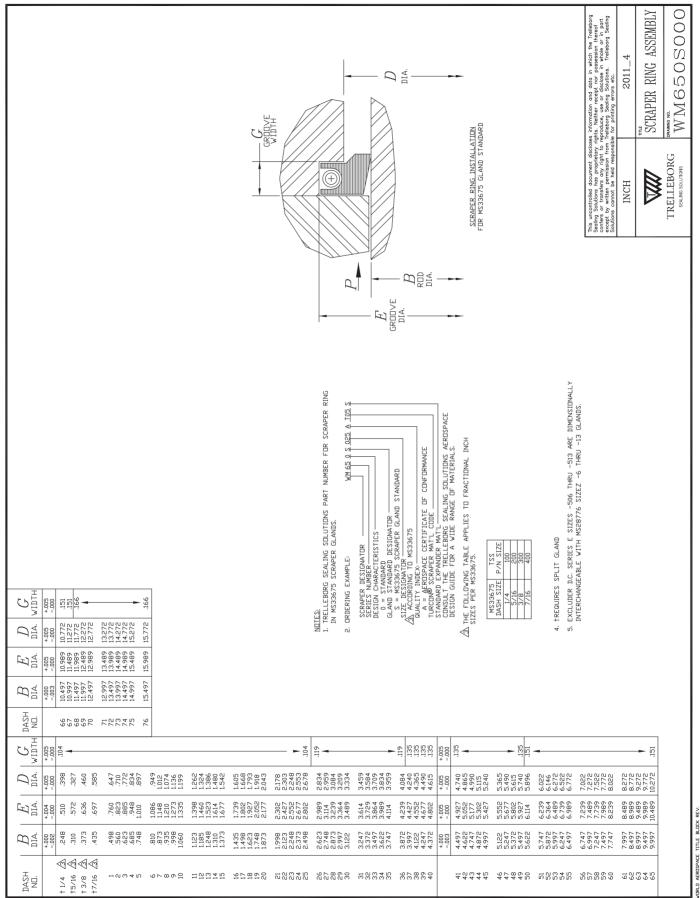

Other elements

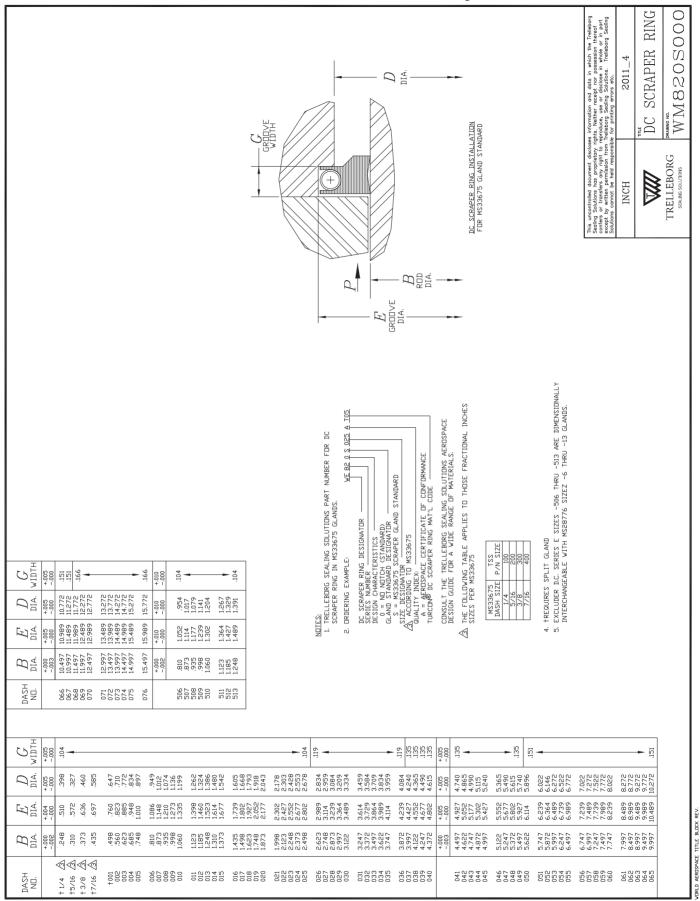

255


_							Tarcon Excluder and Scrapers
2	CLEA	005		002	.006 .007	800 900 900	TRELLEDORG
	DASH ND. 004-009	013-028 013-028 104-109	127-129 127-129 130-132	210-222 210-222	225-227 228-243 228-243	246-247 325-327 328-329	A A A A A A A A A A A A A A A A A A A
	SEAL ID MIN.	.375	.562	1.000	1.375	2.500	REVISION A REVISION A REVISION A NUMBRIAN
	$X_{\rm PIN.}^{\rm FLAT}$.015	.015	.015	.100	.100	FILT FLAT
TABLE 2	$R_{\rm MADIUS}^{RADIUS}$.005	.005	.007	.010	.010	This uncontrolled doorn scores of solutions has p scores of scores of solutions has p scores of scores of scores of scores of scores of scores of sc
- SNDISNE	$R_{\rm MAX.}^{\rm RADIUS}$.010	.015	.015	.015	.020	
GLAND DIMENSIONS	CHAMFER MIN.	.025	020	.040	.045	.055	
SNAP G	$Y_{\rm STEP}_{\rm STEP}$.008/.012 .015/.020	.010/.015 .020/.025	030/.035	.0327.037	.042/.047	
	GRODVE VIDTH	.098/.103 .094/.099	.141/.151	.188/.191	.281/.291	.375/.385	
	DASH ND.	+ 004-009 + 010-028	+ 104-109 110-149	210-247	325-349	425-460	ATION NUT STANDARD
S - TABLE 1	DIAMETRAL CLEARANCE MAX.	.042	.042	.042	.042	.042	PAGE FIG VARIES AND STANDARD GROUVE WIDTH GROUVE WIDTH GROUVE SCAUDE STANDARD MARE FIG VARIES ALOND STANDARD MARE FIG VARIES ALOND STANDARD MARINE COMMON ALL ATTOS STANDARD MANNE MAN
D DIMENSIONS	$R^{\rm Radius}$.005/.015	,005/.015	.010/.025	.0207.035	.0207,035	EIRS EXCLUT EIRS EXCLUT EBBRG SEALL EBBRG
JDER GLAND	GROOVE VIDTH	.098/.103 .094/.099	.141/.151	.188/.191	,281/,291	.375/.385	
TSS EXCLUD	DASH ND.	† 004-009 † 010-028	+ 104-109 110-149	210-247	325-349	425-460	A BURE DIA. 015 A BURE DIA. 015 A CUTIONS PA VISION A PIS CUTIONS PA VISION A PIS CUTIONS PA VISION A PIS CUTIONS PA MATTLE OF C MATTLE OF
<u> </u>	DIA 1014 10003 100000 1000000	6.474	6.974 6.497 7.224 6.747 7.474 6.997	7.974	8.674 8.474 8.974 +.004	000 9.474 9.974	4459 19374 19374 19395 455 11374 11937 11937 455 11374 11397 11450 455 11374 11397 11450 455 11374 11397 11450 455 11374 11397 11450 455 11374 11397 11450 455 11374 11397 11450 455 11374 11397 11450 455 11374 11397 11450 455 11374 11397 1145 455 11374 11397 114 455 11347 1145 1145 456 114 11575 114 456 114 1145 1145 456 114 1145 1145 456 114 1145 1145 456 114 1145 1145 456 114 1145 1145 456 1146 1145 1145 456 1146
F	-		440 441 1440		4 00 4 4 4 4 4 4 4 4 4 4 0 0 4 0 0		
		6 874 11 936		28 1186 91 1249 53 1311			
		212 1.178 213 1.178 214 1.241		217 1.428 218 1.491 219 1.553			
	DIA, DIA, ND. 001 001 029 +210	-+-+-+	- +-+	-+-+-+-	400 5666 1629 1629 1629 1629		Bass Bass Bass Bass Bass Bass Bass Bass
	DIA. DIA. DIA. DIA. DIA. DIA. DIA. DIA.				675 1738 1738 1738 150		
		800 600	015	013 013	015 016 016		
Ľ		-+ +	+++	++	-+-+-+	+ +	









Other elements

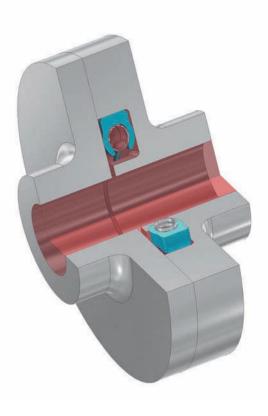
50

RLDCK

Other elements

265

Features and benefits


- For demanding applications
- Internal and external designs
- High performance materials
- Superior low friction
- Very wide temperature range
- Available for AS4716 and non-standard sizes

Turcon[®] Variseal[®] Face Seal

- Pressure actuated
- Large hardware deflection capable
- Corrosion resistant metal spring energizer
- Unidirectional seal

Turcon[®] HST Face Seal and Turcon[®] Wedgpak[®] Face Seal

- Back-up Ring extrusion resistant for zero-leakage
- Elastomer profile gives optimum performance and loading profile
- Provides unidirectional sealing

Turcon[®] Variseal[®] Face Seal HF has unparalleled temperature and chemical resistance and can be used to seal hot or aggressive fluids effectively.

■ Turcon[®] Variseal[®] Face Seal

Description

Turcon[®] Variseal[®] Face Seal is an adaptation of the traditional Turcon[®] Variseal[®] design that maximizes performance in face seal applications. Turcon[®] Variseal[®] M Face Seal utilizes the cantilever or v-spring and Turcon[®] Variseal[®] H Face Seal utilizes a helical spring.

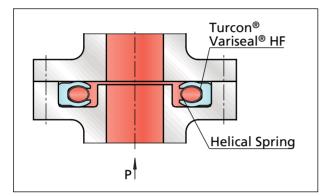


Figure 1 Turcon[®] Variseal[®] H Face Seal, Internal

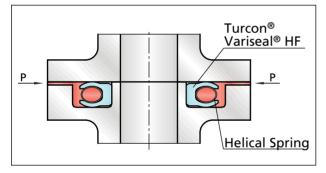


Figure 2 Turcon[®] Variseal[®] H Face Seal, External

Turcon[®] Variseal[®] Face Seal uses the full depth of the seal groove to optimize the amount of sealing material available, maximizing extrusion protection under worst case operating conditions.

Method of Operation

The spring-energizer in Turcon[®] Variseal[®] Face Seal provides tight sealing in system conditions without pressure or when pressure is very low. As the system pressure increases, this activates the seal.

Typically in face seal applications there are impulse pressures. This causes high breathing conditions between the seal and mating hardware. The large heel of Turcon[®] Variseal[®] Face Seal acts as a Back-up Ring in these situations, preventing extrusion of the seal.

> TRELLEBORG SEALING SOLUTIONS

The Turcon[®] Variseal[®] H is especially suitable for sealing gas and for cryogenic applications. The Turcon[®] Variseal[®] M is a good all-round seal with low friction characteristics for rotary joints and swivels. Additionally, due to the large flexibility of the sealing lips, it allows a relatively high deflection of the flanges. However it is important to note that large flange deflections must only occur at low pressure.

Spring Types

For details on v-spring and helical spring types see the main section on Turcon[®] Variseal[®].

Technical Data

Operating pressure:	5,000 psi/ 35 MPa (greater in non-standard configurations)
Temperature range:	-65°F to +390°F/ -54°C to +200°C depending on elastomer material
Clearance:	Can exceed recommendations of AS4716 depending on the combination of pressures and clearance gaps
Media:	Virtually all media and gases

Series

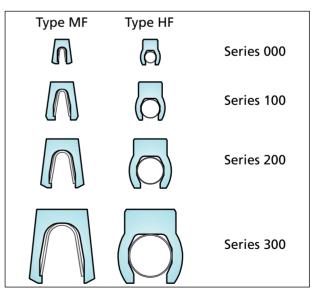


Figure 3 Relative size of Turcon[®] Variseal[®] MF and Turcon[®] Variseal[®] HF seal cross sections

Turcon[®] HST Face Seal

Description

Turcon[®] HST Face Seal is designed to retrofit O-Rings in AS4716 glands in face seal applications. It consists of an L-shaped elastomer sealing element supported by a solid Turcon[®] Back-up Ring.

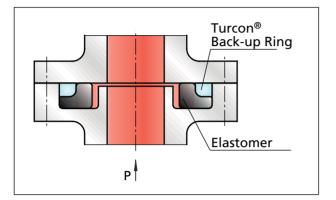


Figure 4 Turcon[®] HST Face Seal (internal pressure)

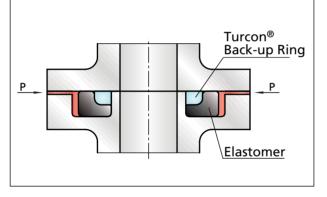


Figure 5 Turcon[®] HST Face Seal (external pressure)

Typically in face seal applications there are impulse pressures. This causes high breathing conditions between the seal and mating hardware. Turcon[®] HST Face Seal gives optimized sealing in these situations.

Method of Operation

At zero or low pressure operation, the L-shaped elastomer element functions as a positive sealing element. As the system pressure increases, the L-shaped elastomer is deflected against the Turcon[®] Back-up Ring. This provides excellent extrusion protection while allowing the L-shaped elastomer to provide outstanding leakage control.

Technical Data

Operation pressure:	5,000 psi/ 35 MPa (greater in non- standard configurations)
Temperature range:	Up to -65°F to +390°F/ -54°C to +200°C depending on elastomer material
Clearance:	Zero clearance is recommended. Clearance can exceed the recommended clearances of AS4716 depending on the combination of pressures and clearance gaps
Media:	Mineral oil-based hydraulic fluids, flame-retardant hydraulic fluids, environmentally-safe hydraulic fluids (bio-oils), phosphate ester- based hydraulic oils, water and others depending on the elastomer material selected

Avoid combining extreme limits.

Series

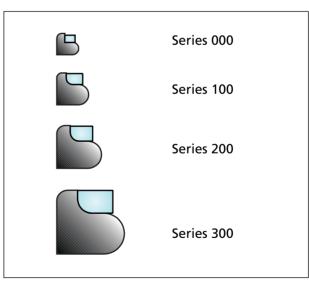


Figure 6 Relative Size of Turcon[®] HST Face Seal cross section

Turcon[®] Wedgpak[®] Face Seal

Description

Turcon[®] Wedgpak[®] Face Seal is an adaptation of the Wedgpak[®] design. It utilizes a triangular shaped Turcon[®] delta ring energized by a uniquely shaped elastomer. This maximizes extrusion protection under abnormal clearance gap conditions.

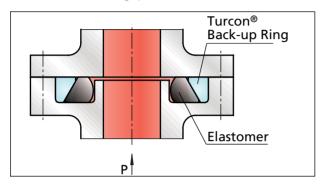


Figure 7 Turcon[®] Wedgpak[®] Face Seal (Internal pressure)

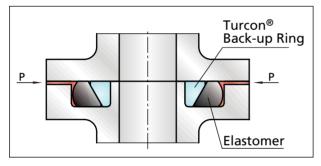


Figure 8 Turcon[®] Wedgpak[®] Face Seal (External pressure)

Typically in face seal applications there are impulse pressures. This causes high breathing conditions between the seal and mating hardware. Turcon[®] Wedgpak[®] Face Seal gives optimized sealing in these situations.

Method of Operation

The Turcon[®] delta ring in Turcon[®] Wedgpak[®] Face Seal uses the full depth of the seal groove to optimize the amount of sealing material available, maximizing extrusion protection under worst case operating conditions.

The special shaped geometry of the elastomer provides a preload under low pressure conditions, and constantly forces the Turcon[®] delta ring up against the clearance gap to prevent extrusion of the elastomer.

Technical Data

Operating pressure:	5,000 psi/ 35 MPa (greater in non- standard configurations)
Temperature range:	-65°F to +390°F/ -54°C to +200°C depending on elastomer material
Clearance:	Can exceed recommendations of MIL-G-5514F/AS4716 dependent upon the combination of pressures and clearance gaps
Media:	Mineral oil-based hydraulic fluids, flame-retardant hydraulic fluids, environmentally-safe hydraulic fluids (bio-oils), phosphate ester- based hydraulic oils, water and others depending on the elastomer material selected

Series

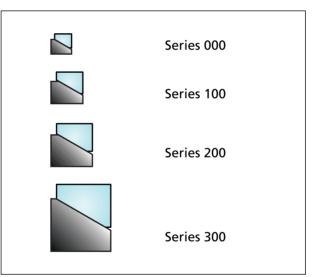
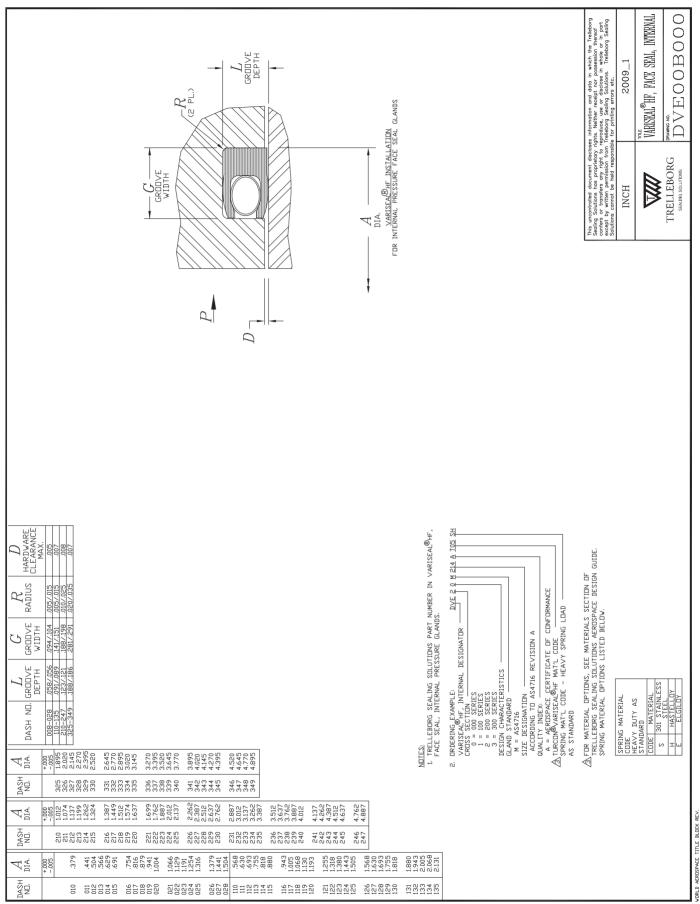
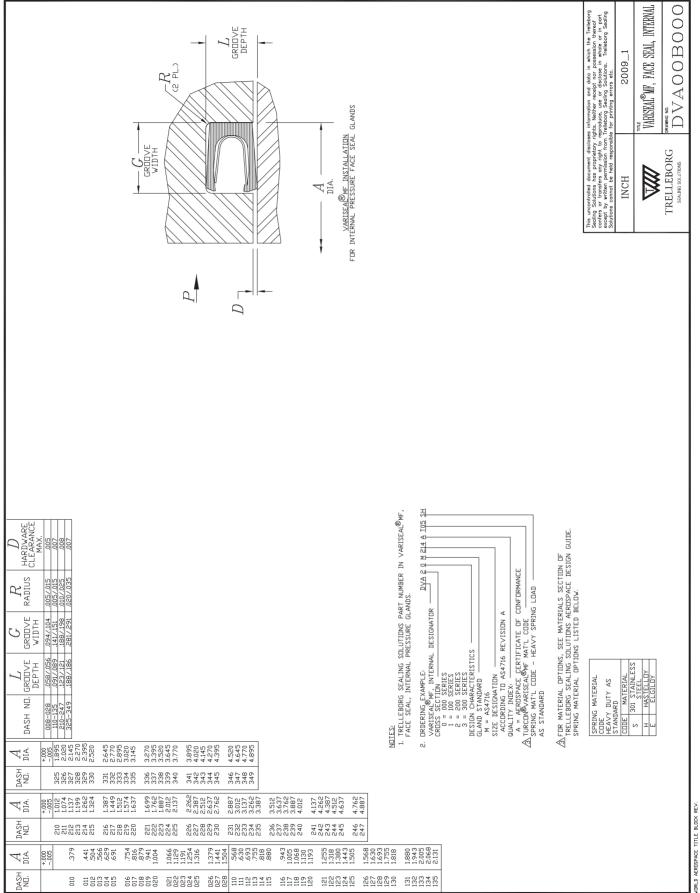
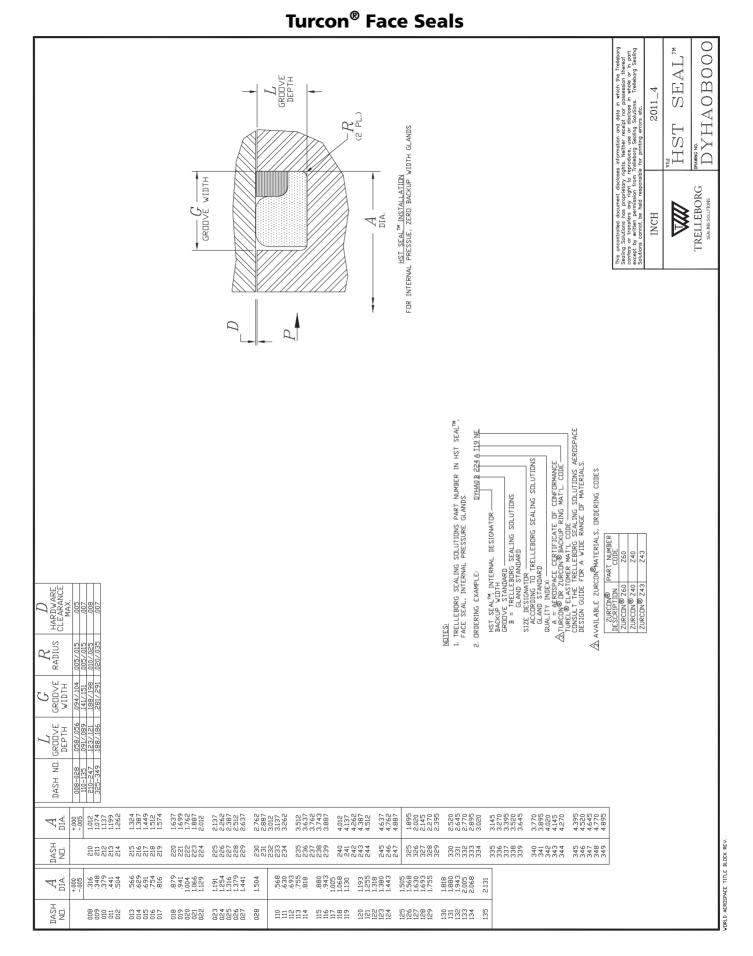



Figure 9 Relative Size of Turcon[®] Wedgpak[®] Face Seal cross section

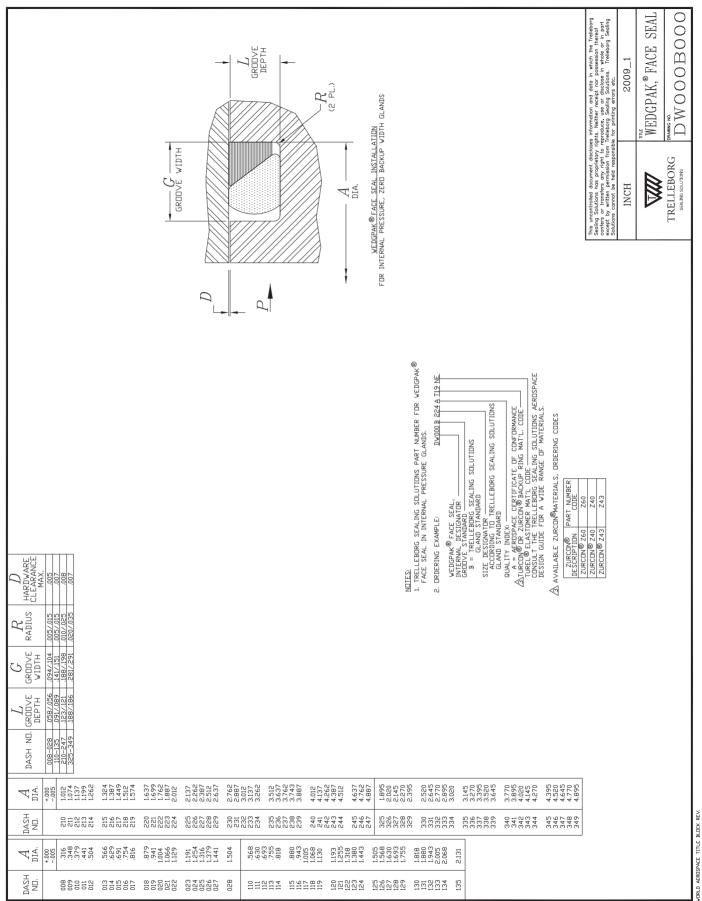
Table I Turcon[®] Face Seal Selection

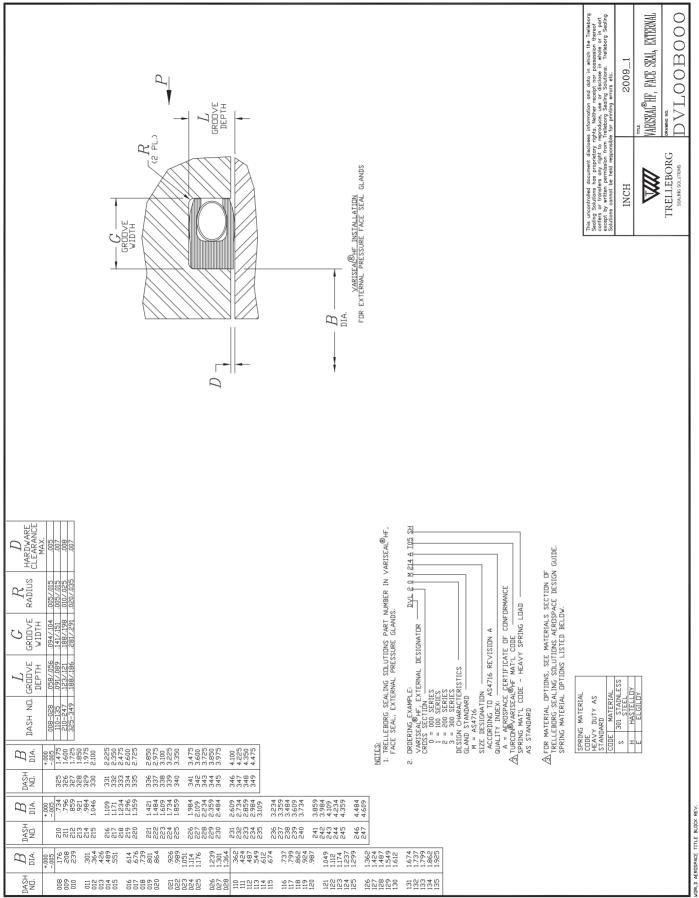
Cross Section	Description	Available Configuration	Part Number	Gland Standard
	Turcon [®] Variseal [®] HF Face Seal		DVE	
	Turcon [®] Variseal [®] MF Face Seal	Internal	DVA	Gland design based on AS4716 dimensions
	Turcon [®] HST Face Seal	Pressure	DYHA	
	Turcon [®] Wedgpak [®] Face Seal		DW00	
	Turcon [®] Variseal [®] HF Face Seal		DVL	
M	Turcon [®] Variseal [®] MF Face Seal	External	DVC	Gland design
	Turcon [®] HST Face Seal	Pressure	DYHB	 based on AS4716 dimensions
	Turcon [®] Wedgpak [®] Face Seal		DW01	

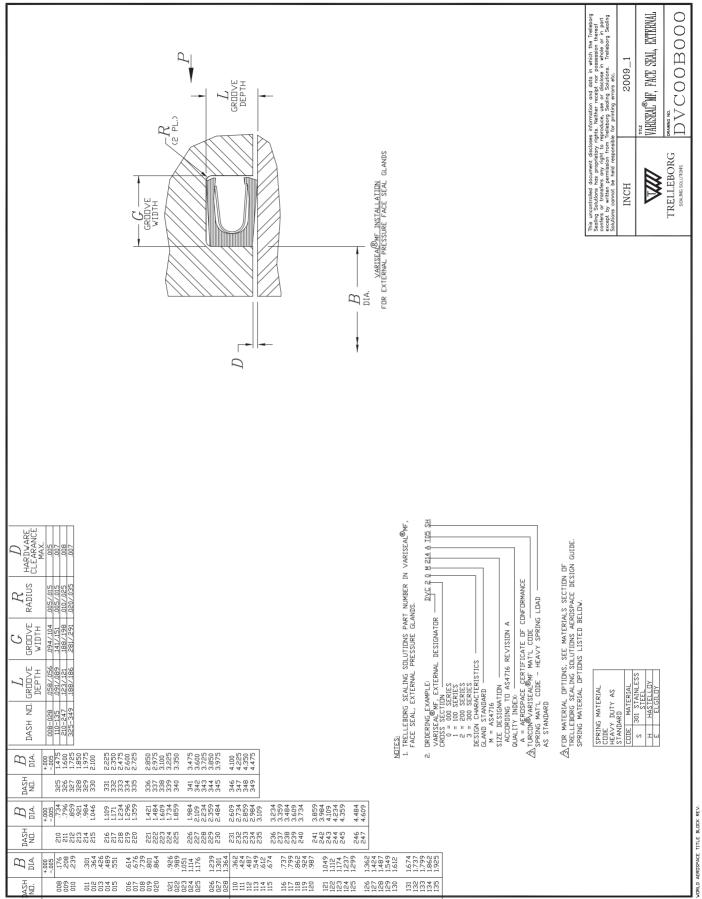




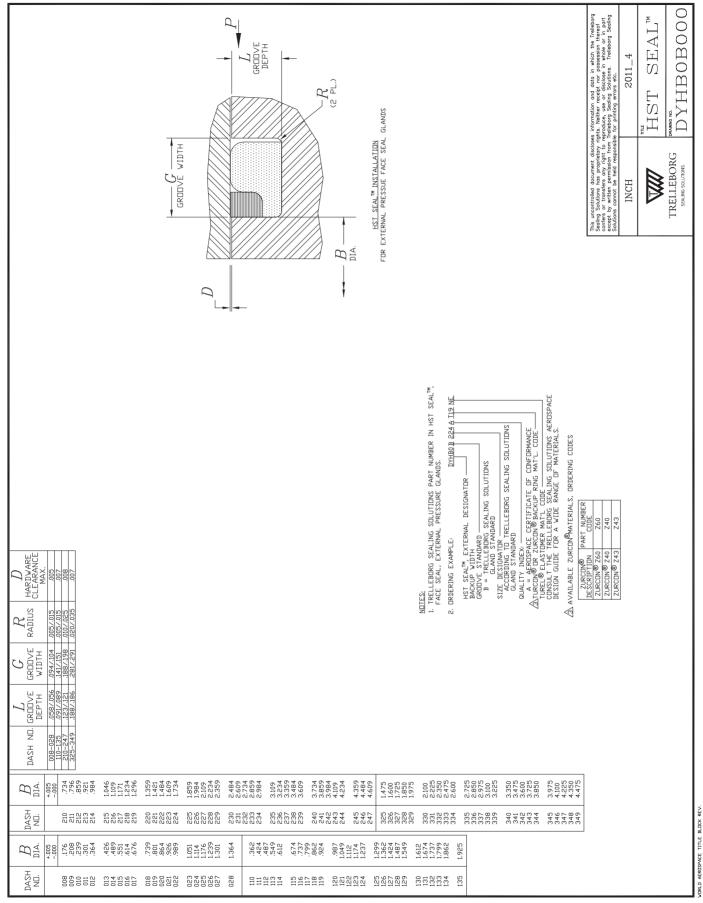
Turcon[®] Face Seals

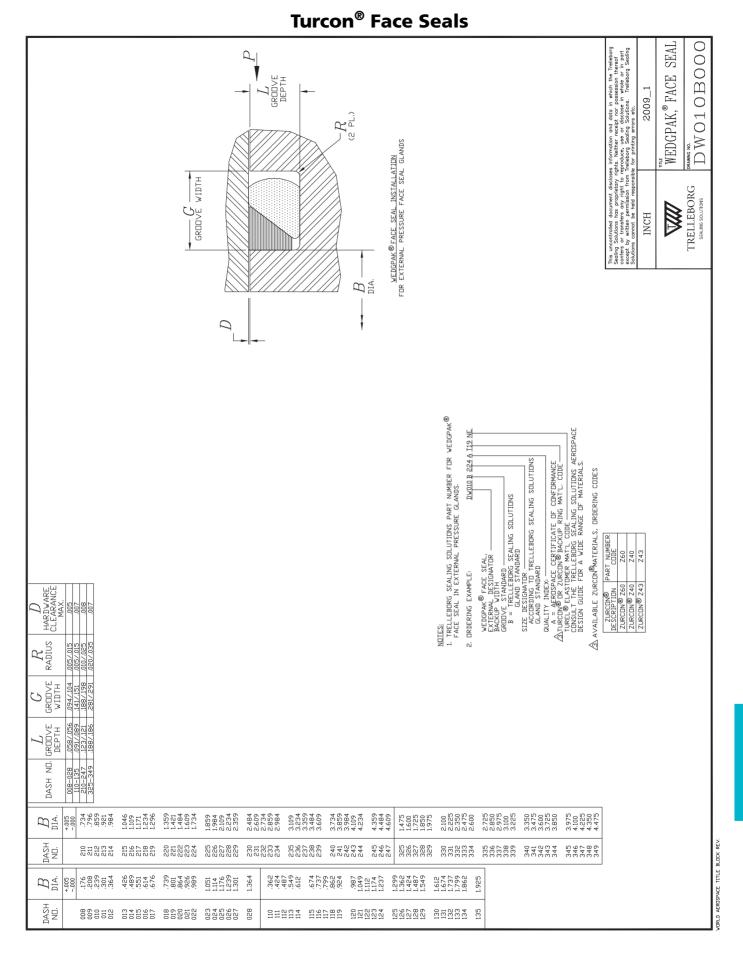

272





274





iurcon race seals	Turcon®	Face Seals
-------------------	---------	------------

Turcon[®] Face Seals

Features and benefits

- Versatile sealing element
- Cost-effective in a wide range of primarily static applications
- Simple one-piece gland design minimizes hardware and design costs
- Compact design allows smaller hardware
- Easy installation
- Compounds specifically engineered for aerospace applications provide broad chemical compatibility
- Many sizes available from stock worldwide

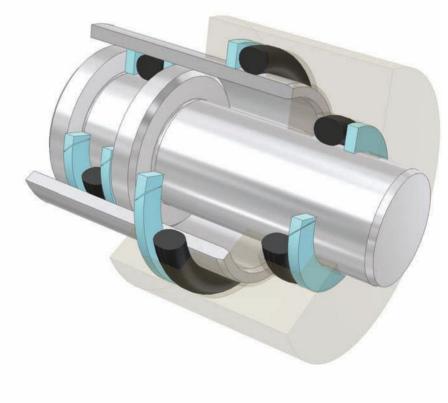


Illustration shows O-Rings in a hydraulic application.

Description

O-Rings are vulcanized in molds and characterized by their circular or torus form. The dimensions of O-Rings are defined by their inside diameter and cross section.

Efficient production methods and ease of use have made O-Rings the most widely used seals. They offer the designer an efficient, versatile and economical sealing element for a wide range of static and very light-duty dynamic applications.

O-Rings can be produced in a wide choice of Turel[®] or Isolast[®] elastomer materials specifically engineered for the aerospace industry. Compounds are available that are compatible with virtually all media commonly used in aircraft or spacecraft applications.

Cross sections of .013 in/ 0.35 mm up to 1.6 in/ 40 mm and inside diameters of up to 196 ft /50 m and more are available. Giant O-Rings can be produced by Trelleborg Sealing Solutions FlexiMold[™] process without the need for a dedicated tool, minimizing lead times and costs.

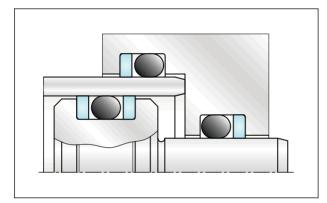


Figure 1 Typical Turel[®] O-Ring Application

In addition, O-Rings can be manufactured in Zurcon[®] polyurethane in hardness 70 to 90 Shore A. These demonstrate high wear and extrusion resistance with low friction.

O-Rings are available to meet ISO 3601, AS568 A, BS1806, BS4518 and other recognized standards.

Applications

Turel[®] or Isolast [®] O-Rings are used as sealing elements on their own or as energizing elements for hydraulic slipper seals and wipers. This means that they cover a large number of fields of application.

Typical aerospace applications include:

- Radial static seal for bushings, covers, pipes and cylinders
- Axial static seal for flanges, manifolds, plates and caps

O-Rings are not generally recommended in dynamic applications as they are limited by speed and the system pressure they are trying to seal against.

Method of Operation

O-Rings are double-acting sealing elements. The initial squeeze or compression acts in a radial or axial direction, depending on the application. This gives the O-Ring its initial sealing capability. These forces are increased by the system pressure to create the total sealing force. This increases as the system pressure increases.

Under pressure the O-Ring behaves in a similar fashion to a fluid with high surface tension. The pressure is transmitted uniformly in all directions. The net result is efficient reliable sealing performance.

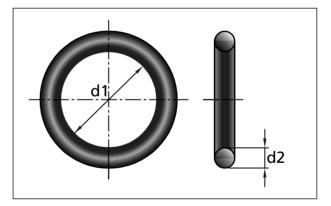


Figure 2 O-Ring Dimensioning

Trelleborg Sealing Solutions recommends O-Rings be used with Turcon $^{\textcircled{B}}$ Back-up Rings at higher pressures.

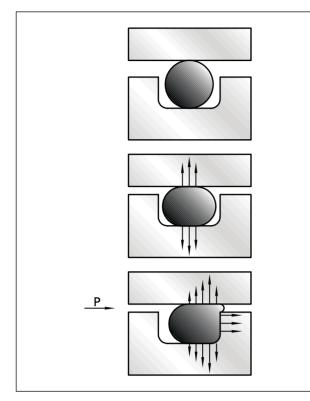


Figure 3 Turel[®] O-Ring Sealing Forces with and without System Pressure

Technical data

O-Rings can be used in a wide range of applications. Temperature, pressure and media determine the choice of appropriate materials. In order to assess the suitability of an O-Ring as a sealing element for a given application, the interaction of all the operating parameters have to be taken into consideration.

Working Pressure

Static applications

Up to 725 psi/ 5 MPa for O-Rings with inside diameter > 1.968 in/ 50 mm without Back-up Ring

Up to 1,500 psi/ 10 MPa for O-Rings with inside diameter > 1.968 in/ 50 mm without Back-up Ring depending on the material, the cross section and clearance

Up to 5,800 psi/ 40 MPa with Back-up Ring

Up to 36,260 psi/ 250 MPa with special Back-up Ring

Dynamic applications

Reciprocating up to 725 psi/ 5 MPa without Back-up Ring

Higher pressures with Back-up Ring

- Speed: Reciprocating up to 1.64 ft/s/ 0.5 m/s Rotating up to 1.64 ft/s/ 0.5 m/s Depending on material and application
- Temperature: From -76 to +617°F/-60 to +325 °C Depending on material and media resistance Peak and continuous operating temperatures and running period should be taken into consideration when specifying material. For rotating applications the temperature increase due to frictional heat must be taken into account.
- Media: Elastomer materials are available that are compatible with virtually all media and gases. To identify suitable elastomer types for a particular media use the Trelleborg Sealing Solutions online chemical compatibility check on www.tss.trelleborg.com

Materials

O-Rings are primarily manufactured from Turel® elastomers including Nitrile (NBR), Fluorocarbon (FKM), Ethylene Propylene Diene Monomer (EPDM), Fluorosilicone (FVMQ) and Silicone Rubber (Q). In addition, for high-temperature applications, an Isolast[®] perfluoroelastomer (FFKM) is recommended. These materials are extremely flexible in their use and are suitable for a large number of applications. For further details on these go to the Material Technology section.

Characteristics and Inspection of Elastomers for use in O-Rings

Hardness

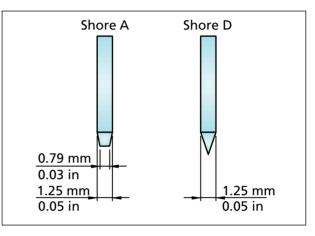
Hardness is an important characteristic of an O-Ring. It is defined as the resistance of a body against penetration of an even harder body of a standard shape and defined pressure.

There are two procedures for hardness testing:

- 1. Shore A/D according to ISO 868 /ISO 7619 / DIN 53 505 / ASTM D 2240 Measurement of test samples
- 2. Durometer IRHD (International Rubber Hardness Degree) according to ISO 48 / ASTM 1414 and 1415 Measurement of test samples and finished parts

The hardness scale has a range from zero (softest) to 100 (hardest). The measured values depend on the elastic qualities of the elastomers, especially the tensile strength.

The test should be carried out at temperatures of 73 \pm 2°F / 23 \pm 2°C - not earlier than 16 hours after the last vulcanization process. If the test is carried out at other temperatures, this should be mentioned in the test report.


Tests should only be carried out with samples which have not previously been stressed mechanically.

Hardness tests according to Shore A / D

The hardness test device for Shore A is an indenter with a pyramid base. It is suitable for use in the hardness range of shore 10 up to 90. Samples with a greater hardness than this should be tested with a Shore D device, an indenter with spike. Test specimen:

Diameter minimum 1.181 in/ 30 mm Thickness minimum 0.236 in /6 mm Upper and lower sides smooth and flat When thin material is being tested it can be layered, providing minimal sample thickness is achieved by a maximum of three layers. All layers must be a minimum 0.079 in / 2 mm thick.

The measurement is done at three different places at a defined distance and time.

Hardness test according to IRHD

The durometer test according to IRHD is used with test samples and with finished goods.

The thickness of the test material has to be adjusted according to the range of hardness. According to ISO 48, there are two hardness ranges.

Soft:	10 to 3	35 IRHD →	Sample thicknesses
			0.394 to 0.591 in/
			10 to 15 mm - procedure L
Norma	: over 3	5 IRHD →	Sample thicknesses
			0.315 to 0.394 in/8 to 10 mm
			- procedure N
			Sample thicknesses
			0.059 to 0.098 in/ 1.5 to
			2.5 mm - procedure M
T I I		<i>c c</i> , , ,	

The hardness of finished parts or product samples usually varies from that of specimen samples, especially those with a curved surface.

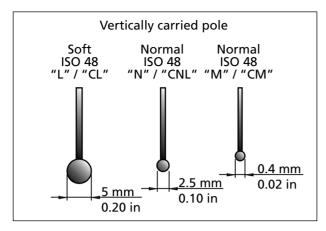


Figure 5 Indenter according to IRHD

Compression Set

An important parameter affecting the sealing capability of an O-Ring is the compression set (CS) of its material. Elastomers, when under compression, demonstrate elasticity and also permanent plastic deformation.

The compression set is determined in accordance with ISO 815 as follows:

Standard test piece:	Cylindrical disc, diameter 0.512 in /13 mm and height
Deformation: Tension release time:	0.236 in /6 mm 25% 30 minutes

$$CS = \frac{H_0 - h_2}{H_0 - h_1} \times 100$$

Where $h_0 = \text{Original height (cross section d}_2)$ $h_1 = \text{Height in the compressed state}$ $h_2 = \text{Height after tension release}$

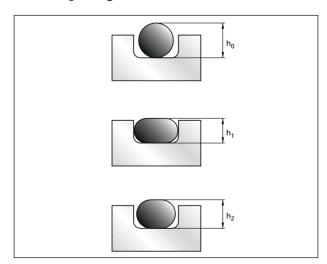


Figure 6 Illustration of compression set

Latest information available at www.tss.trelleborg.com Edition August 2011

Design Recommendations

The following design recommendations do not apply to Isolast[®] perfluoroelastomer materials. For these refer to our Isolast[®] brochure or contact your local Trelleborg Sealing Solutions marketing company for further details.

Installation Recommendations

General recommendations

Before starting installation, check that:

- Lead-in chamfers are made according to drawing
- Bores are deburred and edges rounded
- Machining residues such as chips, dirt and foreign particles are removed
- Screw thread tips are covered
- Seals and components are greased or oiled
- The elastomer is compatible application media
- Lubricants with solid additives, such as molybdenum disulfide or zinc sulfide, are not used in the application.

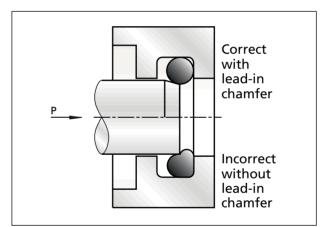


Figure 7 Rod installation with O-Ring

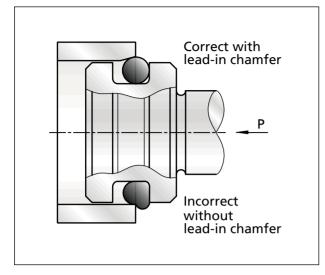


Figure 8 Piston installation with O-Ring

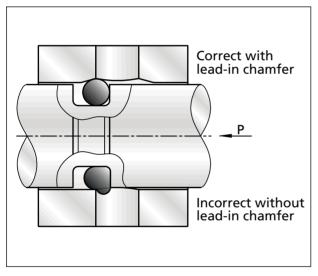


Figure 9 O-Ring installation over transverse bores

Installation over threads, splines etc.

Should an O-Ring have to be stretched over threads, splines, keyways etc., then an assembly mandrel is essential. This mandrel can either be manufactured in a soft metal or a plastic material, without burrs or sharp edges.

Automated installation

Before automated O-Ring installation, good preparation is required. The surfaces of O-Rings can

be treated in several ways to reduce installation forces and prevent O-Rings sticking together.

For further details contact your local Trelleborg Sealing Solutions marketing company.

Initial Compression

An initial compression or squeeze of the O-Ring in the groove is essential to ensure its function as a primary or secondary sealing element. This is required to:

- achieve the initial sealing capability
- bridge production tolerances
- assure defined frictional forces
- compensate for compression set and wear

Depending on the application, the following values apply for the initial squeeze as a proportion of the cross section (d_2) :

Dynamic applications: 6 to 20 percent Static applications: 15 to 30 percent

The design of the grooves can be based on the guide values for the initial squeeze shown in the diagrams in Figures 11 and 12. These take into account the relationship between loads and cross sections according to ISO 3601-2 (version 1987).

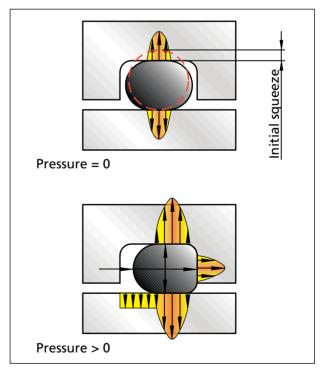


Figure 10 O-Ring contact pressure installed and under service pressure

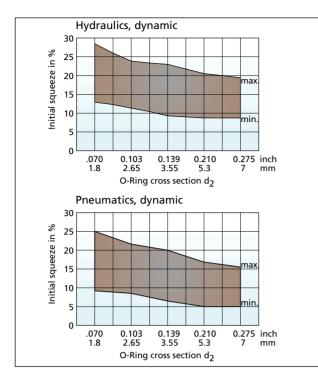


Figure 11 Permissible range of initial squeeze as a function of cross section, radial dynamic

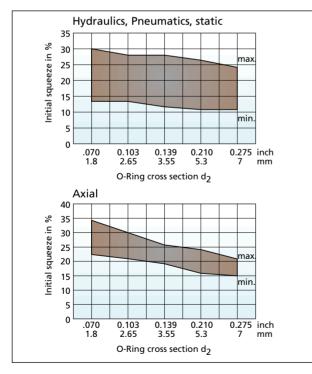


Figure 12 Permissible range of initial squeeze as a function of cross section, radial static and axial

Compression forces

Deformation forces vary depending on the extent of the initial squeeze on the O-Ring and the Shore hardness of its material. Figure 13 shows the specific compression force of the seal circumference as a function of the cross section.

The compression forces shown can be used to estimate the total force to be applied for static installation of O-Rings.

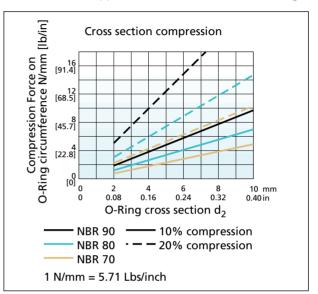


Figure 13 Compression forces on the O-Ring circumference depending on material

Elongation - Compression

With a radial sealing configuration, the O-Ring in an internal gland - "outside sealing" - should be stretched over the diameter of the gland. Maximum elongation in the installed state is six percent for O-Rings with an inner diameter of more than 1.968 in/ 50 mm and eight percent for O-Rings with an inner diameter of less than 1.968 in/ 50 mm.

With external grooves - "inside sealing" - the O-Ring is preferably compressed along its circumference. The maximum circumferential compression in the installed state is three percent.

Exceeding these values will result in an increase or decrease that is too large in the O-Ring cross section, potentially affecting the service life of the seal.

The reduction in cross section diameter (d_2) can be calculated as:

Reduction max =
$$\frac{d_{2min}}{10} \times V_6 \times \left(\frac{d_{3max} - d_{1min}}{d_{1min}}\right)$$

Latest information available at www.tss.trelleborg.com Edition August 2011

With $d_{1min} =$ minimum inside diameter of the O-Ring $d_{2min} =$ minimum cross section of the O-Ring $d_{3max} =$ maximum housing diameter

This figure is approximately half the amount of stretch in percentage terms. An elongation of one percent therefore corresponds to a reduction in the cross section (d_2) of approximately half a percent.

Methods of Installation and Design of Seal Housing

Methods of installation

O-Rings can be used in components in a wide variety of ways. During the design stage, in order to avoid damage during installation, how the O-Ring is to be installed into the component must be taken into consideration. For instance, there should be no edges or bores for the O-Ring to pass over. When long sliding movements are involved, the seal seat should be recessed, if possible, or the O-Rings arranged so that they only have to travel short distances during installation to reduce risk of twisting.

Radial installation (static and dynamic)

Outer sealing

The O-Ring size should be selected so that the inside diameter d_1 is equal to or smaller than groove diameter d_3 .

Axial installation (static)

Inner sealing

The O-Ring size should be selected so that the inside diameter d_1 has the smallest possible deviation from the diameter to be sealed d_4 .

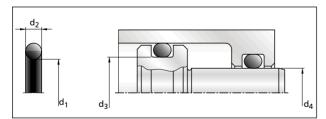


Figure 14 Radial Installation, Static and Dynamic

During axial-static installation, the direction of pressure should be taken into consideration when choosing the O-Ring size. With internal pressure the O-Ring should be chosen so that the outside diameter of the O-Ring is approximately one o two percent larger than the outer groove diameter d5. With external pressure the O-Ring is chosen approximately one to three percent smaller than the inner groove diameter d_6 .

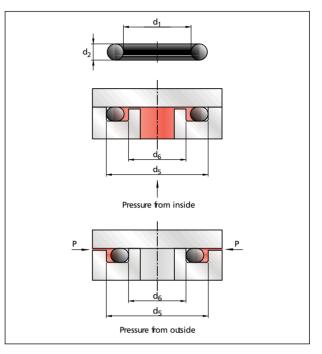


Figure 15 Axial Installation, Static

The O-Ring as a rotary seal

In some applications, for example with short running periods, O-Ring can be used as a rotary seal on shafts.

In order for an O-Ring to be able to function as a rotary seal it must be installed in accordance with specific guidelines, the rotary seal principle. This is based on the fact that an elongated elastomer ring contracts when heated - the Gough-Joule effect.

Using normal design criteria, the inside diameter d1 of the O-Ring will be slightly smaller than the shaft diameter. The heat generated by friction causes the ring to contract even more. This results in a higher pressure on the rotating shaft, so that a lubricating film is prevented from forming under the seal and even higher friction occurs. The result is increased wear and premature failure of the seal.

Using the rotary seal principle, this is prevented by the O-Ring having an inside diameter approximately two to five percent larger than the shaft diameter to be sealed. The O-Ring is installed so that it is compressed radially and pressed against the shaft by the groove diameter. The O-Ring is therefore slightly corrugated in the groove, helping to improve the lubrication.

Special materials are available for rotary seal applications. Trelleborg Sealing Solutions does not recommend the use of O-Rings as rotary seals. Please contact your local Trelleborg Sealing Solutions marketing company for further details.

Technical data

O-Rings can be used in a wide range of applications. The operating temperature, pressure and contact media of the application determine the choice of appropriate materials. In order to be able to assess the suitability of an O-Ring as a sealing element for a given application, the interaction of all the operating parameters have to be taken into consideration.

Working Pressure

Static applications

- Up to 725 psi/ 5 MPa for O-Rings with inside diameter greater than 1.968 in/ 50 mm without Back-up Ring
- Up to 1,500 psi/10 MPa for O-Rings with inside diameter less than 1.968 in/ 50 mm without Back-up Ring Depending on material, cross section and clearance
- Up to 5,800 psi /40 MPa with Back-up Ring
- Up to 36,260 psi /250 MPa with a special Back-up Ring Please note the permissible extrusion gaps.

Dynamic applications

- Reciprocating up to 5 MPa without a Back-up Ring

- Higher pressures with a Back-up Ring

Speed

- Reciprocating up to 1,640 ft/s/ 0.5 m/s

- Rotating up to 1,640 ft/s /0.5 m/s
- Depending on material and application

Temperature

- From -76°F /-60 °C to +617°F /+325 °C Depending on material and media resistance

When assessing the application criteria, the peak and continuous operating temperature and the running period must be taken into consideration. For rotating applications the temperature increase due to frictional heat must be taken into account.

Media

From the wide range of materials offered by Trelleborg Sealing Solutions it is possible to seal against practically all liquids, gases and chemicals. To select the optimum material type use our online chemical compatibility guide and consult your local Trelleborg Sealing Solutions marketing company.

Groove design / Groove dimensions

Lead-in chamfers

Correct design can help to eliminate possible sources of damage and seal failure from the outset.

Since O-Rings are squeezed during installation, lead-in chamfers and rounded edges must be provided.

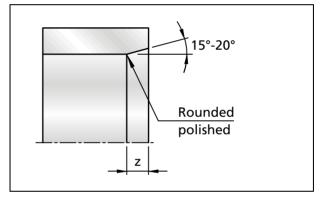


Figure 16 Lead-in Chamfers for Bores, Tubes

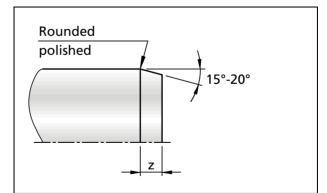


Figure 17 Lead-in Chamfers for Shafts, Rods

The minimum length of the lead-in chamfer is listed in Table I as a function of the cross section d_2 .

Table I Lead-in Chamfers

	chamfers n Z min.	O-Ring cross section d ₂
15°	20°	
2.5	1.5	up to 1.78 1.80
3.0	2.0	up to 2.62 2.65
3.5	2.5	up to 3.53 3.55
4.5	3.5	up to 5.33 5.30
5.0	4.0	up to 7.00
6.0	4.5	above 7.00

The surface roughness of a lead-in chamfer is: $R_a \leq 32~\mu in/~0.8~\mu m$ $R_z \leq 248~\mu in/~6.3~\mu m$

Table II Lead-in Chamfers

Lead-in chamfers length Z min.		O-Ring cross section d ₂
15°	20°	
.100	.060	up to .070
.120	.080	up to .103
.140	.100	up to .139
.180	.140	up to .210
.200	.160	up to .275
.240	.180	above .275

The surface roughness of a lead-in chamfer is: $R_z \le 250 \ \mu in/ \ 6.3 \ \mu m$ $R_a \le 30 \ \mu in/ \ 0.8 \ \mu m$

Radial clearance

The tolerances given in AS4716 and AS5857 and the maximum permissible radial clearance, or extrusion gap, must be maintained.

If the clearance is too large, there is a risk of seal extrusion which can result in the destruction of the O-Ring.

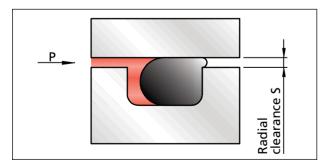


Figure 18 Radial Clearance

The permissible radial clearance between the sealed parts depends on the system pressure, the cross section, and the hardness of the O-Ring and Back-up Ring materials.

Table III contains recommendations for the permissible clearance S as a function of O-Ring cross section and shore hardness. The table is valid for elastomeric materials with the exception of polyurethane and FEP-encapsulated O-Rings.

For pressure above 725 PSI (5 MPa) for O-Rings with inside diameter > 2.000 inches (>50 mm) and above 1500 PSI (10 MPa) for O-Rings with inside diameter < 2.000 inches (<50 mm) we recommend the use of Back-up Rings.

Table III Radial clearance S

O-Ring cross section d ₂	up to .080	.080 - .120	.120 - .200	.200 - .275	above .275
C	P-Rings w	ith hardr	ness of 70	Shore A	
Pressure PSI		Radi	al clearar	nce S	
≤ 500	.003	.004	.004	.005	.006
≤ 1000	.002	.003	.003	.004	.004
≤ 1500	.001	.002	.002	.003	.003
C	-Rings w	ith hardr	ness of 90	Shore A	
Pressure PSI		Radi	al clearar	nce S	
≤ 500	.005	.006	.007	.009	.010
≤ 1000	.004	.005	.006	.007	.008
≤ 1500	.003	.004	.004	.005	.006
≤ 2000	.002	.003	.003	.004	.004
≤ 2500	.002	.002	.003	.003	.004
≤ 3000	.001	.002	.002	.003	.003
≤ 5100	.001	.001	.001	.002	.002

These values assume that the parts are fitted concentrically to one another and do not expand under pressure. If this is not the case, the clearance should be kept correspondingly smaller.

For static applications we recommend a fit of H8/f7.

Table IV Turel[®] O-Ring Types

TSS Part Number	Purchasing Callout	Industry Specification	International Turel [®] Code	
ORMS2AXXXA000NB	MS29512-9YY	MIL-P-5315 (AMS-P-5315)	NB	
ORMS2BXXXA000NB	MS29513-XXX	MIL-P-5315 (AMS-P-5315)	NB	
ORMS2DXXXA000NG	MS28775-XXX	MIL-P-25732	NG	
ORMS2EXXXA000NG	AS28775-XXX	AMS-P-25732	NG	
ORMS2FXXXA000NZ	AS3578-XXX	AM\$7271	NZ	
ORMS2GXXXA000NZ	AS3578-9YY	AM\$7271	NZ	
ORMS2HXXXA000SL	MS9385-XXX	AM\$7267	SL	
ORMS2JXXXA000NZ	MS9020-XXX	AM\$7271	NZ	
ORMS2KXXXA000SL	MS9068-XXX	AM\$3304	SL	
ORMS2LXXXA000NZ	MS9021-XXX	AM\$7271	NZ	
ORMS2MXXXA000SL	MS9386-XXX	AM\$7267	SL	
ORMI2EXXXA000LF	M25988/1-XXX	AMS-R-25988 T1C1G70	LF	
ORMI2GXXXA000LB	M25988/2-XXX	AMS-R-25988 CL3 GR75	LB	
ORMI2HXXXA000LD	M25988/3-XXX	AMS-R-25988 CL1 GR60	LD	
ORMI2FXXXA000LA	M25988/4-XXX	AMS-R-25988 T1C1G80	LA	
ORMI5DXXXA000NE	AS83461/1-XXX	AMS-P-83461	NE	
ORMI5EXXXA000NE	AS83461/2-9YY	AMS-P-83461	NE	
ORMI8FXXXA000FT	M83485/1-XXX	AMS-R-83485	FT	
ORMI8GXXXA000FE	M83248/2-XXX	AMS-R-83248	FE	
ORMI8HXXXA000FE	M83248/1-XXX	AMS-R-83248	FE	
ORMI8KXXXA000FG	AS5729-XXX	AMS7379 -40F tg FKM	FG	
ORMI8MXXXA000FK	AS3208-9YY	AM\$7276	FK	
ORMI8NXXXA000FL	AS3581-XXX	AMS7276	FL	
ORMI8PXXXA000FK	AS3209-XXX	AM\$7276	FL	
ORMI8QXXXA000FK	AS3085-9YY	AM\$7276	FK	
ORMI8RXXXA000FK	AS3084-9YY	AMS7276	FK	
ORNA4AXXXA000EP	NAS1611-XXXA	NAS1613 Rev. 5	EP	
ORNA4BXXXA000EH NAS1611-XXX		NAS1613 Rev. 2	EH	
ORNA4CXXXA000EP	NAS1612-YYA	NAS1613 Rev. 5	EP	
ORNA4DXXXA000EH	NAS1612-YY	NAS1613 Rev. 2	EH	

O-Rings are always supplied to the most current revision level.

Latest information available at www.tss.trelleborg.com Edition August 2011

Installation & Hardware Guidelines

Hardware Design Tips

The following recommendation for hydraulic hardware will simplify the installation of seals. AS4716 specification gives recommendations. They should be considered at an early hardware design stage in order to ensure damage-free installation of seals. These are general guidelines. Further information can be found in catalogs specific to each product types.

Piston and Rod

Lead-in Chamfer

A lead-in chamfer on the end of the rod or bore helps installation. Recommended chamfer dimensions are given below. A lead-in chamfer is especially important where lip seals are to be installed face-first into the gland.

AS4716 Dash No. Series	Z Length Minimum Inches/ mm
-0XX	.043/ 1.092
-1XX	.059/ 1.499
-2XX	.071/ 1.803
-3XX	.106/ 2.692
-4XX	.142/ 3.607

The cylinder bore or rod should have a lead-in chamfer of 20 to 25 degrees by Z length minimum to gently guide the seal assembly into the hardware as shown in Figure 1 and Figure 2. The chamfer should clear the seal assembly, in a free condition, after it has been sized.

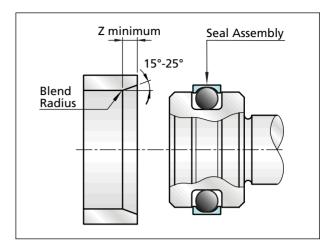
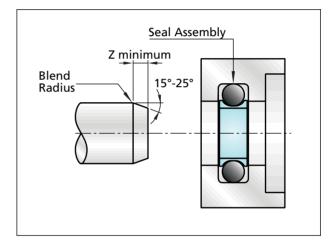



Figure 1 Piston Installation

Ports - Non-operational (Installation Only)

When installing a seal assembly across a port, in a nonoperational capacity, a relief should be provided with 20 to 25 degrees by Z minimum, as shown in Figure 3.

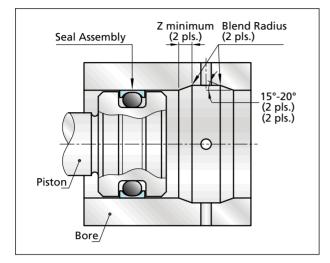


Figure 3 Relief Across Port, Non-operational, Installation Only

For dynamic seals that will cross ports during pressurized operation please contact your local Trelleborg Sealing Solutions marketing company for recommendations

Threads

When passing over threads, the seal assembly must clear the threads or other uneven surfaces. A lead-in chamfer of 20 to 25 degrees by Z minimum will gently guide the seal assembly into the bore as shown in Figure 4.

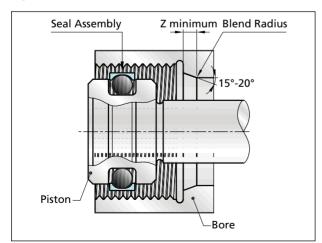


Figure 4 Threads

TRELLEBORG

Material and Finish Recommendations

Recommended aerospace hardware:

Steel surface – bare for cylinders Aluminum surface – hard anodized (type III) Steel surface – HVOF coated (e.g. Tungsten Carbide-Cobalt-Chrome)

Recommended material hardness:

44-48 Rockwell "C" - Low to moderate pressure application

55-60 Rockwell "C" - High-pressure applications

Surface finishes:

Dynamic surfaces:

- Bare metal, hard chrome, hard anodized: Ra = 4-8 Ra μin/0,1-0.2 μm

Dynamic surfaces:

- HVOF: Ra = >4 μin/ 0.1 μm

Static surface in seal groove:

- Slipper Seal (Elastomer contact):
- Ra \leq 32 µin/ 0.8 µm
- Variseal[®] (PTFE contact):
- Ra \leq 12 µin/ 0.3 µm
- Groove sodewall:
- Ra \leq 63 µin/ 1.6 µm

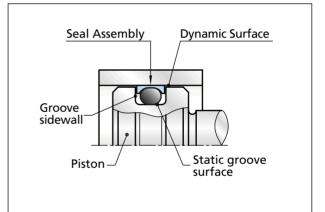


Figure 5 Surface Finishes µ In

Note:

All dynamic surfaces must be either burnished, postground,honed or super-finished (HVOF applied coatings). All dynamic and static surfaces must be free of nicks, scratches and burrs.

General Guidelines

The following installation guidelines should be considered at an early hardware design stage in order to ensure damage-free installation of seals. These are general guidelines. Further information can be found in catalogs specific to each product type.

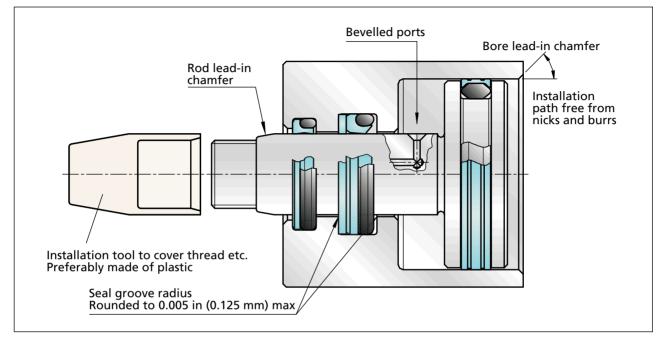
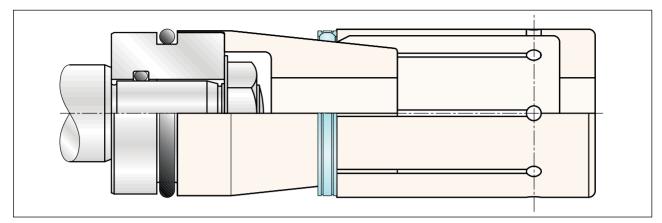


Figure 1 Methods of hardware design to prevent seal damage

- The seal installation path should be kept free of nicks, burrs, scratches or any sharp edges that could damage the seal.
- Any tool used to install a seal should be free of sharp edges. Screwdrivers often damage sealing lips and should not be used to handle seals.
- Tools should preferably be made of hard plastics such as ${\sf Delrin}^{\it @}.$
- In situations where heat is required to soften and expand Turcon[®] PTFE based seal components, submerse them for a few minutes in hot oil or water at +200°F/ +93°C. Heat should not be required to install elastomer components.
- Application of a lubricant to surfaces of the seal and hardware reduces the force required to push the seal into a difficult gland, such as a solid O-Ring groove.
- When using lubricant during installation, ensure that the material of Turel[®] elastomer components is compatible with the lubricant.


 $\mathsf{Delrin}^{\circledast} \text{ is a registered trademark of } \mathsf{Dupont}^{\textsf{TM}}.$

- Piston seals may be sized by freezing them prior to installing the piston in the bore. This is an advantage on spool valve pistons with multiple seals within the hardware.
- When seals are installed across ports, the edge of the ports should be smooth and rounded.
- Design splines or keyways to be of a smaller diameter than the sealing surface or use a protective sleeve to cover them during installation as illustrated in Figure 1.
- Avoid glands that require bending of the seal during installation. When seals must be stretched or compressed into a difficult gland, resize the seals using recommended tools as shown in Figure 2-4.
- Do not side-load the seals any more than is necessary. Avoid situations in the gland where a heavy rod or piston bears against one side of the seal.

Latest information available at www.tss.trelleborg.com Edition August 2011

Procedure for installation of piston seals

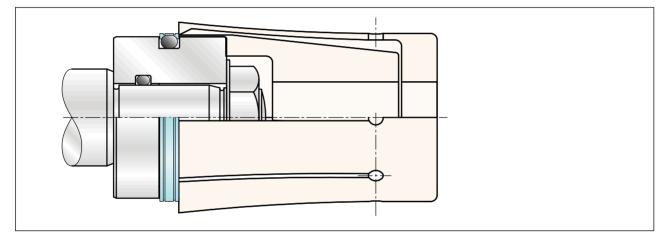


Figure 3 Sealing element after snapping into the groove

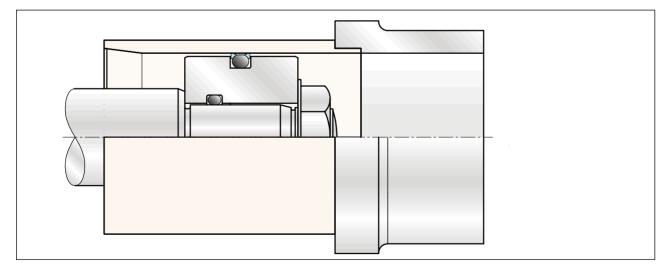


Figure 4 Sizing the sealing element with a sizing sleeve

If the Turcon[®] seal is expanded more than 15 percent (10 percent for the high-filled materials Turcon[®] T11 and Turcon[®] T29), a split groove is necessary.

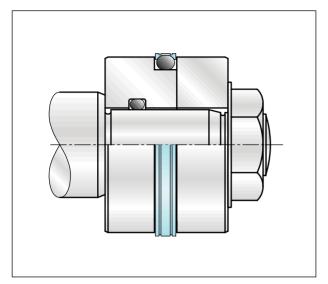


Figure 5 Installation in a split groove

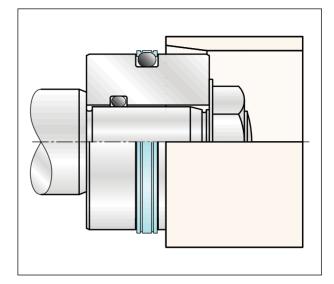


Figure 7 Sizing of the installation

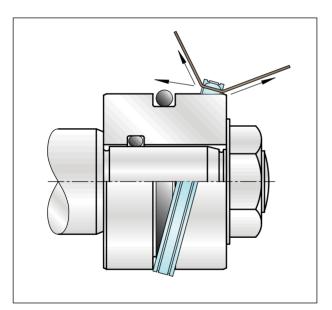


Figure 6 Fitting the seal ring onto the O-Ring in the groove, using a thin plastic strip

Procedure for installation of rod seals

- Place the elastomer part into the groove.
- Compress the Turcon[®] part into a kidney shape. The seal must have no sharp bends, see figure below. Use a rounded object to compress the Turcon[®] part without pinching or creating sharp bends.

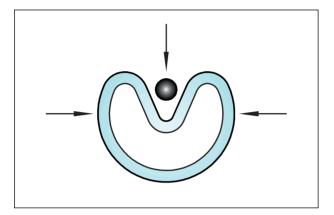


Figure 8 Kidney-shaped deformation of the seal ring

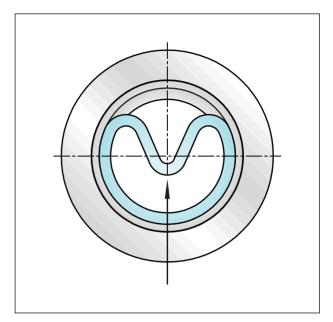


Figure 9 Inserting the seal ring into a closed groove

- After placing the seal into the groove, form it into a ring again by smoothing the ID by hand.
- Finally, size the seal ring using a mandrel which should have a chamfer of 10 to 15 degrees over a length of approximately 1.18 in/ 30 mm. See Figure 10.

In order to avoid damage to the seals the sizing mandrel should be made from a polymer material with good sliding characteristics and high surface quality such as $Delrin^{\textcircled{m}}$.

The piston rod itself can also be used for calibration, provided it has a sufficiently long lead-in chamfer

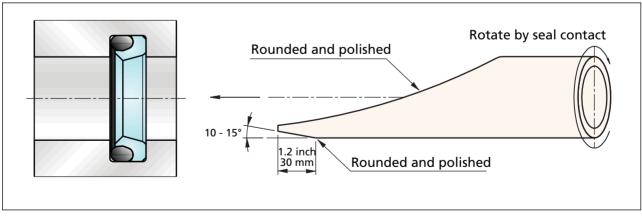


Figure 10 Sizing of the installed seal

 $\mathsf{Delrin}^{\circledast}$ is a registered trademark of $\mathsf{Dupont}^{\texttt{TM}}$

Shelf Life and Correct Storage

Seals and bearings are often stored for prolonged periods of time.

Turcon[®] PTFE based sealing materials have an unlimited shelf life as the material is inert to all commonly occurring gases and chemicals. It is therefore not adversely affected by exposure to air, light ozone or oxygen.Temperature variations do not harm Turcon[®] materials.

Elastomer seals have a limited shelf life and various external factors such as heat, moisture, light, oxygen, ozone and contact with liquid media can alter their properties. Resulting deformation, aging and weathering can cause deterioration of mechanical and physical properties.

The shelf life of seals can be preserved by correct storage in their original packaging.

General Advice on Storage of All Seal Types

Physical damage

All seals and bearings should be stored so that they are safe from physical damage. In particular, deformation should be avoided. Do not store heavy goods or packages on top of seals as this may permanently damage them.

Heat

The ideal temperature for storage is between $+41^{\circ}F$ and $+77^{\circ}F/+5^{\circ}C$ and $+25^{\circ}C$. Direct contact with heaters should be avoided.

Moisture

Parts must be stored dry under normal atmospheric conditions: 65 percent relative moisture ± 10 .

Packaging

Seals and bearings should be kept in their original sealed packaging, as supplied from Trelleborg Sealing Solutions.

Advice on Storage of Elastomer Seals

Instructions on storage, cleaning and maintenance of elastomer seal elements are described in international standards, such as:

Storage of rubber products: DIN 7716/BS 3F68: 1977

Maximum age limitation: ARP5316 ISO/CD 27996

The individual guidelines give several recommendations to preserve the shelf life of elastomers, depending on their material type.

Light

Elastomer seals should not be exposed to ultraviolet or neon light.

Oxygen

To protect elastomer seals from oxygen, they should be kept in their original packaging or in airtight containers.

Ozone

Elastomer seals should be stored away from the following equipment. These appliances can cause deterioration of the elastomers due to ozone discharge.

- Mercury discharge lamps
- High voltage equipment
- Electric motors
- Electric spark sources or discharges

Cross Section	Old Part No.	New Part No.	Description	Seal Type	Gland Standard
	S11052	PF00_B	Turcon® Dual Piston Ring (S13126 is preferred design)	Piston	Trelleborg Standard Fractional
	S11065	WM650S	Turcon [®] Scraper Ring (S34382 is preferred design)	Rod	MS33675 MIL-P-5514 thru MIL-G-5514; All Revisions
	S11109	BP090A	Turcon® Back-up Ring Spiral	Rod/Piston	MIL-P-5514; Revisions A, B, C, D, E One or Two Back-up Rings
	S11114	PF01_B	Turcon® Dual Piston Ring (S13126 is preferred design)	Piston	Trelleborg Standard Fractional
	S11214	OC140M	PTFE O-Ring (S13126 is preferred design)	Piston	Trelleborg Standard Fractional
	S11242	N/A	Turcon® Delta Back- up Ring Single Turn (S33823 is preferred design)	Rod	LS4652 MIL-P-5514: Revisions C, D, E One or Two Back-up Rings
	S11243	N/A	Turcon® Delta Back- up Ring Single Turn (S33823 is preferred design)	Piston	LS4653 MIL-P-5514: Revisions C, D, E One or Two Back-up Rings
	S11248	BG480M	Turcon [®] Back-up Ring Single Turn	Rod/Piston	MIL-P-5514 thru MIL-G-5514; All Revisions One or Two Back-up Rings
	S11338	PD130M	Turcon® Cap Seal	Piston	MIL-P-5514: Revisions A, B, C, D, E Zero Back-up Rings
	S11370	N/A	Turcon [®] Channel Seal	Rod	MIL-P-5514: Revisions A, B Two Back-up Rings
	S11395	N/A	Turcon® Back-up Ring	Rod/Piston	Trelleborg Standard
	S11399	N/A	Turcon® Back-up Ring	Rod/Piston	Trelleborg Standard
	S11413	N/A	Turcon [®] Back-up Ring	Rod/Piston	Trelleborg Standard

Cross Section	Old Part No.	New Part No.	Description	Seal Type	Gland Standard
	S11589	RD890M	Turcon® Cap Seal	Rod	MIL-P-5514: Revisions A, B, C, D, E Zero Back-up Rings
	S11717	RG00_B	Turcon [®] Glyd Ring®	Rod	Trelleborg Standard Fractional Rod
	S11718	PG00_B	Turcon [®] Glyd Ring®	Piston	Trelleborg Standard Fractional Bore
	S11732	OC320M	PTFE O-Ring (general purpose application)	Rod/Piston	AS568A
	S11859	RD240B	Turcon® Cap Seal	Rod	Trelleborg Standard
	S11860	N/A	Turcon® Cap Seal	Rod	Trelleborg Standard
	S11940	RP40_M	Turcon® Plus Seal® (S30775 is preferred design)	Rod	MIL-P-5514; Revisions C, D, E Zero Back-up Rings
	S11943	N/A	Turcon® Plus Seal® (S34750 is preferred design)	Piston	MIL-P-5514; Revisions C, D, E Zero Back-up Rings
	S12066	RG66_B	Turcon [®] Glyd Ring [®] Series B	Rod	Trelleborg Standard MIL-P-5514; Revisions A, B, C, D, E
	S12068	PG68_B	Turcon® Glyd Ring® Series B	Piston	Trelleborg Standard MIL-P-5514; Revisions A, B, C, D, E
	S12083	PF02_B	Turcon [®] Dual Piston Ring (S30071 is preferred design)	Piston	Trelleborg Standard MIL-P-5514; Revisions A, B, C, D, E
	S12095	RF95_B	Turcon [®] Footseal (S33121 is preferred design)	Rod	Boeing Standard BAS: BACS11AA
	S12223	RD03_M	Turcon [®] Double Delta [®]	Rod	MIL-P-5514; Revisions A, B Two Back-up Rings

Cross Section	Old Part No.	New Part No.	Description	Seal Type	Gland Standard
	S12230	PF03_B	Turcon [®] Dual Piston Ring (S30071 is preferred design)	Piston	Trelleborg Standard MIL-P-5514; Revisions A, B, C, D, E
	S12257	N/A	Turcon [®] Dual Piston Ring (S13126 is preferred design)	Piston	Trelleborg Standard Fractional
	S12508	PD03_M	Turcon® Double Delta® (S30642 is preferred design)	Piston	MIL-P-5514; Revisions C, D, E Two Back-up Rings
	S12517	BP170M	Turcon [®] Back-up Ring Spiral, Heavy Duty	Rod/Piston	MIL-P-5514; Revisions C, D, E Fractional One or Two Back-up Rings
	S12546	RG46_B	Turcon® Glyd Ring® Series C	Rod	Trelleborg Standard Fractional Rod
	S12547	PG47_B	Turcon [®] Glyd Ring [®] Series C	Piston	Trelleborg Standard Fractional Bore
	S12560	RD040M	Turcon [®] Channel Seal	Rod	MIL-P-5514; Revisions C, D, E Two Back-up Rings
	S12561	RD05_M	Turcon [®] Double Delta [®] (S30632 is preferred design)	Rod	MIL-P-5514; Revisions C, D, E Two Back-up Rings
	S12562	RD06_M	Turcon® Double Delta® (S30630 is preferred design)	Rod	MIL-P-5514; Revisions A, B, C, D, E Zero Back-up Rings
	S12563	PD04_M	Turcon® Double Delta® (S30640 is preferred design)	Piston	MIL-P-5514; Revisions A, B, C, D, E Zero Back-up Rings
	S12587	BU870M	Turcon® Back-up Ring Solid	Rod/Piston	MIL-P-5514; Revisions A, B, C, D, E One or Two Back-up Rings
	S12599	PG990B	Turcon [®] Channel Seal	Piston	Trelleborg Standard
	S12603	PD05_M	Turcon® Double Delta® (S30641 is preferred design)	Piston	MIL-P-5514; Revisions C, D, E One Back-up Ring

Cross Section	Old Part No.	New Part No.	Description	Seal Type	Gland Standard
	S12604	RD07_M	Turcon® Double Delta® (S30631 is preferred design)	Rod	MIL-P-5514; Revisions C, D, E One Back-up Ring
	S12714	PD00_M	Turcon® Double Delta®	Piston	MIL-P-5514; Revisions A, B One Back-up Ring
	S12715	RD08_M	Turcon® Double Delta® (S30611 is preferred design)	Rod	MIL-P-5514; Revisions A, B One Back-up Ring
	S12716	PD06_M	Turcon® Double Delta® (S30622 is preferred design)	Piston	MIL-P-5514; Revisions A, B Two Back-up Rings
	S12735	RP35_M	Turcon [®] Grooved Plus Seal [®] (S30855 is preferred design)	Rod	MIL-P-5514; Revisions A, B, C, D, E Zero Back-up Rings
	S12737	PP37_M	Turcon [®] Grooved Plus Seal [®] (S34760 is preferred design)	Piston	MIL-P-5514; Revisions A, B, C, D, E Zero Back-up Rings
	S12766	BG660M	Turcon [®] Back-up Ring	Rod/Piston	MIL-P-5514; Revisions D, E One or Two Back-up Rings
	S12794	RG94_B	Turcon [®] Glyd Ring [®]	Rod	Trelleborg Standard MIL-P-5514; Revisions A, B
	S12795	PG95_B	Turcon [®] Glyd Ring [®]	Piston	Trelleborg Standard Metric
	S12956	RD090M	Turcon® Cap Seal	Rod	MIL-P-5514; Revisions A, B, C, D, E Zero Back-up Rings
	S12957	PD070M	Turcon® Cap Seal	Piston	MIL-P-5514; Revisions A, B, C, D, E Zero Back-up Rings
	S13050	BUSOOM	Turcon® Back-up Ring, Heavy Duty	Rod/Piston	MIL-P-5514; Revisions C, D, E One or Two Back-up Rings
	S13068	RD100M	Turcon® Camseal®	Rod	MIL-P-5514; Revisions C, D, E Two Back-up Rings

Cross Section	Old Part No.	New Part No.	Description	Seal Type	Gland Standard
	S13069	BG690M	Turcon® Camseal®	Piston	MIL-P-5514; Revisions C, D, E Two Back-up Rings
	S13076	N/A	Grooved Turcon® Double Delta®	Piston	MIL-P-5514; Revisions C, D, E One Back-up Ring
	S13077	N/A	Grooved Turcon® Double Delta®	Rod	MIL-P-5514; Revisions C, D, E One Back-up Ring
	S13095	PF04_B	Turcon® Piston Ring	Piston	Trelleborg Standard Fractional
	S13122	BGS20M	Turcon® Back-up Ring Single Turn, Heavy Duty, Scarf-cut	Rod/Piston	MIL-P-5514 thru MIL-G-5514 All Revisions One or Two Back-up Rings
	S13126	PF05_B	Turcon [®] Dual Piston Ring	Piston	Trelleborg Standard Fractional
	S13135	PF06_B	Turcon® Dual Piston Ring	Piston	Trelleborg Standard MIL-G-5514
	S13180	N/A	Grooved Turcon® Double Delta®	Piston	MIL-P-5514; Revisions A, B One Back-up Ring
	S13181	N/A	Grooved Turcon® Double Delta®	Rod	MIL-P-5514; Revisions A, B One Back-up Ring
	S13200	RD12_M	Grooved Turcon® Double Delta®	Rod	MIL-P-5514; Revisions A, B Two Back-up Rings
	S13201	N/A	Grooved Turcon® Double Delta®	Piston	MIL-P-5514; Revisions A, B Two Back-up Rings
	S13206	N/A	Grooved Turcon® Double Delta®	Rod	MIL-P-5514; Revisions C, D, E Two Back-up Rings
	S13207	N/A	Grooved Turcon® Double Delta®	Piston	MIL-P-5514; Revisions C, D, E Two Back-up Rings

Cross Section	Old Part No.	New Part No.	Description	Seal Type	Gland Standard
	S30010	RD140M	Turcon [®] Channel Seal	Rod	MIL-P-5514; Revisions C, D, E Two Back-up Rings
	S30050	RD160M	Turcon® Delta Seal®	Rod	MIL-P-5514; Revisions C, D, E Two Back-up Rings
	S30058	RG58N	Turcon® Glyd Ring®	Rod	Trelleborg Standard Metric
	S30059	PG59N	Turcon [®] Glyd Ring [®]	Piston	Trelleborg Standard Metric
	S30071	PF07_B	Turcon [®] Dual Piston Ring	Piston	Trelleborg Standard MIL-P-5514; Revisions C, D, E
	S30213	N/A	Turcon® Cap Seal	Rod	Trelleborg Standard MIL-P-5514; Revisions C, D, E
	S30289	PD080M	Turcon® Channel Seal	Piston	MIL-P-5514; Revisions C, D, E Two Back-up Rings
	S30294	BG940M	Turcon® Back-up Ring Cut	Rod/Piston	Boeing Standard BACR12BM
	S30310	BU100M	Turcon® Back-up Ring Solid	Rod/Piston	Boeing Standard BACR12BP
	S30388	WM880S	Turcon [®] Scraper Ring (S34382 is preferred design)	Rod	Boeing Standard BACS34A
	S30395	WE95_B	Turcon® Excluder® (S32925 is preferred design)	Rod	Trelleborg Standard MIL-P-5514 thru MIL-G-5514 All Revisions
	S30471	N/A	Turcon® Footseal (S33121 is preferred design)	Rod	Boeing Standard BACS11AA
	S30611	N/A	Turcon [®] Double Delta®II	Rod	MIL-P-5514; Revisions A, B One Back-up Ring

Cross Section	Old Part No.	New Part No.	Description	Seal Type	Gland Standard
	S30622	N/A	Turcon [®] Double Delta [®] II	Piston	MIL-P-5514; Revisions A, B Two Back-up Rings
	S30630	RD17_M	Turcon [®] Double Delta [®] II	Rod	MIL-P-5514; Revisions C, D, E Zero Back-up Rings
	S30631	RD18_M	Turcon [®] Double Delta [®] II	Rod	MIL-P-5514; Revisions C, D, E One Back-up Ring
	\$30632	RD19_M	Turcon [®] Double Delta [®] II	Rod	MIL-P-5514; Revisions C, D, E Two Back-up Rings
	S30640	PD09_M	Turcon [®] Double Delta [®] II	Piston	MIL-P-5514; Revisions C, D, E Zero Back-up Rings
	S30641	PD10_M	Turcon [®] Double Delta [®] II	Piston	MIL-P-5514; Revisions C, D, E One Back-up Ring
	S30642	PD11_M	Turcon [®] Double Delta [®] II	Piston	MIL-P-5514; Revisions C, D, E Two Back-up Rings
	S30650	RD50_M	Turcon [®] Double Delta [®] II	Rod	MIL-G-5514; Revision F Zero Back-up Rings
	S30651	RD51_M	Turcon [®] Double Delta [®] II	Rod	MIL-G-5514; Revision F One Back-up Ring
	S30652	RD52_M	Turcon® Double Delta®II	Rod	MIL-G-5514; Revision F Two Back-up Rings
	S30660	PD60_M	Turcon [®] Double Delta [®] II	Piston	MIL-G-5514; Revision F Zero Back-up Rings
	S30661	PD61_M	Turcon [®] Double Delta [®] II	Piston	MIL-G-5514; Revision F One Back-up Ring
	S30662	PD62_M	Turcon [®] Double Delta [®] II	Piston	MIL-G-5514; Revision F Two Back-up Rings

Cross Section	Old Part No.	New Part No.	Description	Seal Type	Gland Standard
	S30669	WE69_S	Turcon [®] Scraper, Series E (S33865 is preferred design)	Rod	MS33675 MIL-P-5514 thru MIL-G-5514 All Revisions
	S30675	RD200M	Turcon® Delta Seal®	Rod	MIL-P-5514; Revisions C, D, E One Back-up Ring
	S30676	N/A	Turcon® Delta Seal®	Piston	MIL-P-5514; Revisions C, D, E One Back-up Ring
	S30677	RD210M	Turcon® Delta Seal®	Rod	MIL-P-5514; Revisions C, D, E Two Back-up Rings
	S30678	PD780M	Turcon® Delta Seal®	Piston	MIL-P-5514; Revisions C, D, E Two Back-up Rings
	S30681	N/A	Turcon® Delta Seal®	Rod	MIL-G-5514; Revision F One Back-up Ring
	S30682	N/A	Turcon® Delta Seal®	Piston	MIL-G-5514; Revision F One Back-up Ring
	S30683	N/A	Turcon® Delta Seal®	Rod	MIL-G-5514; Revision F Two Back-up Rings
	S30684	N/A	Turcon® Delta Seal®	Piston	MIL-G-5514; Revision F Two Back-up Rings
	S30772	PP72_M	Turcon [®] Plus Seal [®] II (S34750 is preferred design)	Piston	MIL-G-5514; Revision F Zero Back-up Rings
	S30775	RP75_M	Turcon [®] Plus Seal [®] II	Rod	MIL-G-5514; Revision F Zero Back-up Rings
	S30852	PP52_M	Grooved Turcon® Plus Seal® II (S34760 is preferred design)	Piston	MIL-G-5514; Revision F Zero Back-up Rings
	S30855	RP55_M	Grooved Turcon® Plus Seal® II	Rod	MIL-G-5514; Revision F Zero Back-up Rings

Cross Section	Old Part No.	New Part No.	Description	Seal Type	Gland Standard
	S30989	BU890M	Turcon® Back-up Ring, Solid	Rod/Piston	AS568 One or Two Back-up Rings
	S32152	PF52_B	Turcon [®] Dual Piston Ring	Piston	Trelleborg Standard MIL-G-5514; Revision F
	S32240	PV920M	Turcon® Variseal® M	Piston	MIL-P-5514; Revisions C, D, E Zero Back-up Rings
	S32240	RV920M	Turcon® Variseal® M	Rod	MIL-P-5514; Revisions C, D, E Zero Back-up Rings
	S32265	PV930M	Turcon® Variseal® M	Piston	MIL-P-5514; Revisions C, D, E Zero Back-up Rings
	S32265	RV930M	Turcon® Variseal® M	Rod	MIL-P-5514; Revisions C, D, E Zero Back-up Rings
	S32571	RS570B	Turcon [®] Stepseal®	Rod	Trelleborg Standard MIL-P-5514; Revision E
	S32572	PS720B	Turcon [®] Stepseal®	Piston	Trelleborg Standard MIL-P-5514; Revision E
	S32573	RS730B	Turcon [®] Stepseal®	Rod	Trelleborg Standard MIL-P-5514; Revision E
	S32574	PS740B	Turcon [®] Stepseal®	Piston	Trelleborg Standard MIL-P-5514; Revision E
	S32830	RD22_M	Turcon [®] Grooved Double Delta [®] II	Rod	MIL-P-5514; Revisions C, D, E Zero Back-up Rings
	S32831	N/A	Turcon [®] Grooved Double Delta [®] II	Rod	MIL-P-5514; Revisions C, D, E One Back-up Ring
	S32832	N/A	Turcon [®] Grooved Double Delta®II	Rod	MIL-P-5514; Revisions C, D, E Two Back-up Rings

Cross Section	Old Part No.	New Part No.	Description	Seal Type	Gland Standard
	S32840	N/A	Turcon [®] Grooved Double Delta [®] II	Piston	MIL-P-5514; Revisions C, D, E Zero Back-up Rings
	S32841	N/A	Turcon [®] Grooved Double Delta [®] II	Piston	MIL-P-5514; Revisions C, D, E One Back-up Ring
	S32842	N/A	Turcon [®] Grooved Double Delta [®] II	Piston	MIL-P-5514; Revisions C, D, E Two Back-up Rings
	S32850	RD80_M	Turcon [®] Grooved Double Delta [®] II	Rod	MIL-G-5514; Revision F Zero Back-up Rings
	S32851	RD81_M	Turcon [®] Grooved Double Delta [®] II	Rod	MIL-G-5514; Revision F One Back-up Ring
	S32852	RD82_M	Turcon [®] Grooved Double Delta [®] II	Rod	MIL-G-5514; Revision F Two Back-up Rings
	S32860	PD80_M	Turcon [®] Grooved Double Delta [®] II	Piston	MIL-G-5514; Revision F Zero Back-up Rings
	S32861	PD81_M	Grooved Turcon® Double Delta®II	Piston	MIL-G-5514; Revision F One Back-up Ring
	S32862	PD82_M	Grooved Turcon® Double Delta®II	Piston	MIL-G-5514; Revision F Two Back-up Rings
	S32891	N/A	Turcon® Glyd Ring® DC Series C	Rod	Trelleborg Standard Fractional Rod
	S32892	N/A	Turcon® Glyd Ring® DC Series C	Piston	Trelleborg Standard Fractional Bore
	S32893	N/A	Turcon® Glyd Ring® DC Series B	Rod	Trelleborg Standard MIL-P-5514; Revisions C, D, E
	S32894	N/A	Turcon [®] Glyd Ring [®] DC Series B	Piston	Trelleborg Standard MIL-P-5514; Revisions C, D, E

Cross Section	Old Part No.	New Part No.	Description	Seal Type	Gland Standard
	S32909	N/A	Turcon [®] Glyd Ring [®] Series J	Rod	Trelleborg Standard Fractional Rod
	S32910	PG02_B	Turcon® Glyd Ring® Series J	Piston	Trelleborg Standard Fractional Bore
	S32913	RG13_B	Turcon® Glyd Ring® DC Series J	Rod	Trelleborg Standard Fractional Rod
	S32914	PG14_B	Turcon® Glyd Ring® DC Series J	Piston	Trelleborg Standard Fractional Bore
	S32925	WE25_B	Turcon® Excluder® DC	Rod	Trelleborg Standard MIL-P-5514 thru MIL-G-5514 All Revisions
	S32927	RG27_B	Turcon® Glyd Ring® Series J	Rod	Trelleborg Standard MIL-P-5514 Revision F
	S32928	PG28_B	Turcon® Glyd Ring® Series J	Piston	Trelleborg Standard MIL-P-5514 Revision F
	\$32933	RGE3_B	Turcon [®] Glyd Ring [®] DC Series J	Rod	Trelleborg Standard Rod MIL-P-5514; Revision F
	S32934	PGE4_B	Turcon [®] Glyd Ring [®] DC Series J	Piston	Trelleborg Standard MIL-P-5514; Revision F
	S32979	RH790M	Turcon® Hatseal® II Two-Piece (S34852 is preferred design)	Rod	MIL-G-5514; Revision F Two Back-up Rings
	S32985	N/A	Turcon® Hatseal® II Two-Piece (S34851 is preferred design)	Rod	MIL-G-5514; Revision F One Back-up Ring
	S32991	RH910M	Turcon® Hatseal® II Two-Piece (S34853 is preferred design)	Rod	Boeing Standard
	S33081	N/A	Turcon® Plus Seal® II (S34571 is preferred design)	Rod	MIL-G-5514; Revision F One Back-up Ring

Cross Section	Old Part No.	New Part No.	Description	Seal Type	Gland Standard
	S33084	N/A	Turcon® Plus Seal® II (S34581 is preferred design)	Piston	MIL-G-5514; Revision F One Back-up Ring
	S33087	N/A	Turcon [®] Plus Seal [®] II (S34711 is preferred design)	Rod	MIL-G-5514; Revision F One Back-up Ring
	S33090	N/A	Grooved Turcon® Plus Seal® II (S34721 is preferred design)	Piston	MIL-G-5514; Revision F One Back-up Ring
	S33121	RF210B	Turcon® Foot Seal II	Rod	Boeing Standard
	S33157	BUS70M (Solid) BGS70M (Scarf-cut)	Turcon® Back-up Ring Solid or Scarf-cut, two required	Rod/Piston	MIL-G-5514; Revisions C, D, E Two Back-up Rings
	S33277	N/A	Turcon® Delta Back- up Ring, Solid	Rod	MIL-P-5514; Revisions C, D, E One or Two Back-up Rings
	S33278	N/A	Turcon® Delta Back-up Ring, Solid	Piston	MIL-P-5514; Revisions C, D, E One or Two Back-up Rings
	S33317	RH170M	Turcon® Hatseal® II Three-Piece (S34831 is preferred design)	Rod	MIL-G-5514; Revision F One Back-up Ring
	\$33353	N/A	Turcon® Hatseal® II Three-Piece (S34832 is preferred design)	Rod	MIL-G-5514; Revision F Two Back-up Rings
	S33528	N/A	Turcon® Hatseal® II Three-Piece (S34842 is preferred design)	Piston	MIL-G-5514; Revision F Two Back-up Rings
	S33555	RD550M	Turcon® Hatseal® II Two-Piece (S34842 is preferred design)	Rod	Boeing Standard
	S33557	N/A	Turcon [®] Plus Seal [®] II (S34572 is preferred design)	Rod	MIL-G-5514; Revision F Two Back-up Rings
	S33565	N/A	Turcon® Hatseal® II Three-Piece (S34841 is preferred design)	Piston	MIL-G-5514; Revision F One Back-up Ring

Cross Section	Old Part No.	New Part No.	Description	Seal Type	Gland Standard
	S33709	PP09_M	Turcon [®] Plus Seal [®] II	Piston	MIL-G-5514; Revision F Two Back-up Rings
	\$33823	BU230M	Turcon [®] Delta Back- up Ring, Solid	Rod	MIL-G-5514; Revision F One or Two Back-up Rings
	S33824	BU440M	Turcon® Delta Back- up Ring, Solid	Piston	MIL-G-5514; Revision F One or Two Back-up Rings
	S33861	BGS10M (solid) BUS10M (Scarf-cut)	Turcon® Back-up Ring Solid or Scarf-cut, one required	Rod/Piston	MIL-G-5514; Revision F One Back-up Ring
	S33865	WE65_S	Turcon [®] Excluder [®] DC, Series E	Rod	MS33675 MIL-P-5514 thru MIL-G-5514F All Revisions
	S34382	WM820S	Turcon® DC Scraper Ring	Rod	MS33675 MIL-P-5514 thru MIL-G-5514F All Revisions
	S34435	RP01_M	Turcon [®] Plus Seal [®] Il Set	Rod	MIL-G-5514; Revision F Two Back-up Rings
	S34545	GPXB	Turcon® Slydring® (1/32 thick)	Piston	Trelleborg Standard MIL-G-5514F
	S34546	GPWB	Turcon® Slydring® (1/16 thick)	Piston	Trelleborg Standard MIL-G-5514F
	S34547	GP_YB	Turcon® Slydring® (3/32 thick)	Piston	Trelleborg Standard MIL-G-5514F
	S34548	GR_XB	Turcon® Slydring® (1/32 thick)	Rod	Trelleborg Standard MIL-G-5514F
	S34549	GRWB	Turcon® Slydring® (1/16 thick)	Rod	Trelleborg Standard MIL-G-5514F
	S34550	GR_YB	Turcon® Slydring® (3/32 thick)	Rod	Trelleborg Standard MIL-G-5514F

Cross Section	Old Part No.	New Part No.	Description	Seal Type	Gland Standard
	S34571	RP71_M	Turcon [®] Plus Seal [®] II	Rod	MIL-G-5514; Revision F One Back-up Ring
	S34572	RP72_M	Turcon [®] Plus Seal [®] II	Rod	MIL-G-5514; Revision F Two Back-up Rings
	S34581	PP81_M	Turcon [®] Plus Seal [®] II	Piston	MIL-G-5514; Revision F One Back-up Ring
	S34582	PP82_M	Turcon [®] Plus Seal [®] II	Piston	MIL-G-5514; Revision F Two Back-up Rings
	S34690	RB90_M	Turcon® T-Seal	Rod	MIL-G-5514; Revision F Zero Back-up Rings
	S34691	RB91_M	Turcon® T-Seal	Rod	MIL-G-5514; Revision F One Back-up Ring
	S34692	RB92_M	Turcon® T-Seal	Rod	MIL-G-5514; Revision F Two Back-up Rings
	S34700	PB00_M	Turcon® T-Seal	Piston	MIL-G-5514; Revision F Zero Back-up Rings
	S34701	PB01_M	Turcon® T-Seal	Piston	MIL-G-5514; Revision F One Back-up Ring
	S34702	PB02_M	Turcon® T-Seal	Piston	MIL-G-5514; Revision F Two Back-up Rings
	S34711	RP11_M	Grooved Turcon® Plus Seal® II	Rod	MIL-G-5514; Revision F One Back-up Ring
	S34712	RP12_M	Grooved Turcon® Plus Seal® II	Rod	MIL-G-5514; Revision F Two Back-up Rings
	S34721	PP21_M	Grooved Turcon® Plus Seal® II	Piston	MIL-G-5514; Revision F One Back-up Ring

Cross Section	Old Part No.	New Part No.	Description	Seal Type	Gland Standard
	S34722	PP22_M	Grooved Turcon® Plus Seal® II	Piston	MIL-G-5514; Revision F Two Back-up Rings
	S34750	PP50_M	Turcon [®] Plus Seal [®] II	Piston	MIL-G-5514; Revision F Zero Back-up Rings
	S34760	PP60_M	Grooved Turcon® Plus Seal® II	Piston	MIL-G-5514; Revision F Zero Back-up Rings
	S34767	RSA70B	Turcon [®] Stepseal®	Rod	Trelleborg Standard MIL-G-5514; Revision F
	S34768	PSA80B	Turcon [®] Stepseal®	Piston	Trelleborg Standard MIL-G-5514; Revision F
	S34770	RA70_M	Turcon® Wedgpak®	Rod	MIL-G-5514; Revision F Zero Back-up Rings
	S34771	RA71_M	Turcon® Wedgpak®	Rod	MIL-G-5514; Revision F One Back-up Ring
	S34772	RA72_M	Turcon® Wedgpak®	Rod	MIL-G-5514; Revision F Two Back-up Rings
	S34780	PA80_M	Turcon® Wedgpak®	Piston	MIL-G-5514; Revision F Zero Back-up Rings
	S34781	PA81_M	Turcon® Wedgpak®	Piston	MIL-G-5514; Revision F One Back-up Ring
	S34782	PA82_M	Turcon® Wedgpak®	Piston	MIL-G-5514; Revision F Two Back-up Rings
	S34831	RH310M	Turcon® Hatseal® II Three-Piece	Rod	MIL-G-5514; Revision F One Back-up Ring
	S34832	RH320M	Turcon® Hatseal® II Three-Piece	Rod	MIL-G-5514; Revision F Two Back-up Rings

Cross Section	Old Part No.	New Part No.	Description	Seal Type	Gland Standard
	S34841	N/A	Turcon® Hatseal® II Three-Piece	Piston	MIL-G-5514; Revision F One Back-up Ring
	S34842	N/A	Turcon® Hatseal® II Three-Piece	Piston	MIL-G-5514; Revision F Two Back-up Rings
	S34851	RH510M	Turcon® Hatseal® II Two-Piece	Rod	MIL-G-5514; Revision F One Back-up Ring
	S34852	RH520M	Turcon® Hatseal® II Two-Piece	Rod	MIL-G-5514; Revision F Two Back-up Rings
	S34853	RH530M	Turcon® Hatseal® II Two-Piece	Rod	Boeing Standard BACS11AA
	S35961	RA610M	Turcon® Wedgpak®	Rod Static	MIL-G-5514; Revision F Zero Back-up Rings
	S35964	PA640M	Turcon® Wedgpak®	Piston Static	MIL-G-5514; Revision F Zero Back-up Rings
	S36611	RP00_M	Turcon® Plus Seal® II Set	Rod	MIL-G-5514; Revision F One Back-up Ring, Unbonded
	S36612	RP99_M	Turcon® Plus Seal® II Set	Rod	MIL-G-5514; Revision F Two Back-up Rings, Unbonded
	S36621	PP01_M	Turcon [®] Plus Seal [®] II Set	Piston	MIL-G-5514; Revision F One Back-up Ring, Unbonded
	S36622	PP03_M	Turcon® Plus Seal® II Set	Piston	MIL-G-5514; Revision F Two Back-up Rings, Unbonded
	S36991	BG990M	Turcon® Stakbak®, Scarf-cut	Rod	MIL-G-5514; Revision F One Back-up Ring
	S36992	BG920M	Turcon [®] Stakbak [®] , Scarf-cut	Rod	MIL-G-5514; Revision F Two Back-up Rings

Cross Section	Old Part No.	New Part No.	Description	Seal Type	Gland Standard
	S37001	BG010M	Turcon® Stakbak®, Scarf-cut	Piston	MIL-G-5514; Revision F One Back-up Ring
	S37002	BG020M	Turcon® Stakbak®, Scarf-cut	Piston	MIL-G-5514; Revision F Two Back-up Rings
	S37011	BG110M	Turcon® Stakbak®, Scarf-cut	Rod	MIL-G-5514; Revision F One Back-up Ring
	S37021	BG210M	Turcon® Stakbak®, Scarf-cut	Piston	MIL-G-5514; Revision F One Back-up Ring
	S37051	RP51_M	Turcon® Plus Seal® Il Set	Rod	MIL-G-5514; Revision F One Back-up Ring
	S37052	RP52_M	Turcon® Plus Seal® Il Set	Rod	MIL-G-5514; Revision F Two Back-up Rings
	S37055	BG550M	Turcon® Stakbak®, Scarf-cut	Rod	MIL-G-5514; Revision F Two Back-up Rings
	S37060	BG600M	Turcon® Stakbak®, Scarf-cut	Piston	MIL-G-5514; Revision F One Back-up Ring
	S37061	PP61_M	Turcon® Plus Seal® Il Set	Piston	MIL-G-5514; Revision F One Back-up Ring
	S37062	PP62_M	Turcon® Plus Seal® Il Set	Piston	MIL-G-5514; Revision F Two Back-up Rings
	S37076	BG760M	Turcon® Stakbak®, Scarf-cut	Rod	MIL-G-5514; Revision F One Back-up Ring
	S37083	BG830M	Turcon® Stakbak®, Scarf-cut	Piston	MIL-G-5514; Revision F One Back-up Ring
	S37241	BG410M	Turcon® Stakbak®, Scarf-cut, Static Seal Set	Piston	MIL-G-5514; Revision F One Back-up Ring

Cross Section	Old Part No.	New Part No.	Description	Seal Type	Gland Standard
	S37242	BG420M	Turcon® Stakbak®, Scarf-cut, Static Seal Set	Piston	MIL-G-5514; Revision F Two Back-up Rings
	S37251	BG510M	Turcon® Stakbak®, Scarf-cut, Static Seal Set	Rod	MIL-G-5514; Revision F One Back-up Ring
	S37252	BG520M	Turcon® Stakbak®, Scarf-cut, Static Seal Set	Rod	MIL-G-5514; Revision F Two Back-up Rings
	S37261	BG610M	Turcon® Stakbak®, Scarf-cut, Static Seal Set	Piston	MIL-G-5514; Revision F One Back-up Ring
	S37271	BG710M	Turcon® Stakbak®, Scarf-cut, Static Seal Set	Rod	MIL-G-5514; Revision F One Back-up Ring
	S37401	PP02_M	Turcon [®] Plus Seal [®] II Set	Piston	MIL-G-5514; Revision F One Back-up Ring
	S37411	RP02_M	Turcon [®] Plus Seal [®] II Set	Rod	MIL-G-5514; Revision F One Back-up Ring
	S37431	RP03_M	Turcon® Plus Seal® II Set	Rod	MIL-G-5514; Revision F One Back-up Ring
	S37804	PP040M	Turcon [®] Plus Seal [®] AQ	Piston	MIL-G-5514; Revision F Zero Back-up Rings
	S37967	WE670B	Turcon [®] Excluder [®] AS	Rod	AS4088
	S37971	WE710B	Turcon [®] Excluder [®] AS	Rod	AS4052 Rev. B Type I
	S37972	WE720B	Turcon [®] Excluder [®] AS	Rod	AS4052 Rev. A Type II
	S38000	DW000B	Turcon® Wedgpak®	Face (External Pressure)	Trelleborg Face Seal Gland Standard

Cross Section	Old Part No.	New Part No.	Description	Seal Type	Gland Standard
	S38001	DW010B	Turcon® Wedgpak®	Face (Internal Pressure)	Trelleborg Face Seal Gland Standard
	S38002	PF09_B	Turcon [®] Single Piston Ring	Piston	Trelleborg Standard MIL-G-5514; Revision F
	S38003	PF08_B	Turcon® Single Piston Ring	Piston	Trelleborg Standard MIL-G-5514; Revision F
	S38362	PP00_M	Turcon® Plus Seal® PR	Piston	Two Back-up Rings MIL-G-5514; Revision F
	S38371	RP31_M	Turcon® Plus Seal® PR	Rod	One Back-up Ring MIL-G-5514; Revision F
	S38372	RP32_M	Turcon® Plus Seal® PR	Rod	Two Back-up Rings MIL-G-5514; Revision F
	S38410	RB10_M	Turcon® T-Seal	Rod	MIL-G-5514; Revision F Zero Back-up Rings
	S38411	RB11_M	Turcon® T-Seal	Rod	MIL-G-5514; Revision F One Back-up Ring
	S38412	RB12_M	Turcon® T-Seal	Rod	MIL-G-5514; Revision F Two Back-up Rings
	S38420	PB20_M	Turcon® T-Seal	Piston	MIL-G-5514; Revision F Zero Back-up Rings
	S38421	PB21_M	Turcon® T-Seal	Piston	MIL-G-5514; Revision F One Back-up Ring
	S38422	PB22_M	Turcon® T-Seal	Piston	MIL-G-5514; Revision F Two Back-up Rings
	S38544	BG440G	Turcon® Back-up Ring Scarf-cut	Rod	AS4716 One or Two Back-up Rings

Cross Section	Old Part No.	New Part No.	Description	Seal Type	Gland Standard
	S38545	BG450G	Turcon® Back-up Ring Scarf-cut	Piston	AS4716 One or Two Back-up Rings
	S38587	BG870G	Turcon® Back-up Ring, Scarf-cut (1/2 Width)	Rod	AS4716 Two Back-up Rings in One Back-up Ring Width Gland
	S38588	BG880G	Turcon® Back-up Ring, Scarf-cut (1/2 Width)	Piston	AS4716 Two Back-up Rings in One Back-up Ring Width Gland
	S38611	RA1OM	Turcon® Wedgpak® EP	Rod	MIL-G-5514; Revision F One Back-up Ring
	S38612	RA2_OM	Turcon® Wedgpak® EP	Rod	MIL-G-5514; Revision F Two Back-up Rings
	S38618	BU180G	Turcon® Back-up Ring Solid	Piston	AS4716 One or Two Back-up Rings
	S38619	BU190G	Turcon® Back-up Ring Solid	Rod	AS4716 One or Two Back-up Rings
	S38620	PQ200M	Turcon® AQ-Seal® 5	Piston	Trelleborg Standard MIL-G-5514; Revision F
	S38621	PA1_OM	Turcon® Wedgpak® EP	Piston	MIL-G-5514; Revision F One Back-up Ring
	S38622	PA2_OM	Turcon® Wedgpak® EP	Piston	MIL-G-5514; Revision F Two Back-up Rings
	S38647	RP470B	Grooved Turcon® Plus Seal® PR	Rod	Boeing Standard BACS11AA
	S38649	RA490B	Turcon® Wedgpak®	Rod	Boeing Standard BACS11AA
	S38661	PP68_M	Grooved Turcon® Plus Seal® PR	Piston	One Back-up Ring MIL-G-5514; Revision F

Cross Section	Old Part No.	New Part No.	Description	Seal Type	Gland Standard
	S38662	PP66_M	Grooved Turcon [®] Plus Seal [®] PR	Piston	MIL-G-5514; Revision F Two Back-up Rings
	S38671	RP81_M	Turcon [®] Plus Seal [®] PR Set	Rod	MIL-G-5514; Revision F One Back-up Ring
	S38672	RP82_M	Turcon® Plus Seal® PR Set	Rod	MIL-G-5514; Revision F Two Back-up Rings
	S62600	PV910M	Turcon® Variseal® H	Piston	MIL-P-5514; Revisions C, D, E Zero Back-up Rings, MIL-G-5514F and AS4716
	S62600	RV910M	Turcon® Variseal® H	Rod	MIL-P-5514; Revisions C, D, E Zero Back-up Rings, MIL-G-5514F and AS4716
	S910	PV950M	Turcon® Variseal® W	Piston	MIL-P-5514; Revisions C, D, E Zero Back-up Rings, MIL-G-5514F and AS4716
	S910	RV950M	Turcon® Variseal® W	Rod	MIL-P-5514; Revisions C, D, E Zero Back-up Rings, MIL-G-5514F and AS4716
	N/A	DVA	Turcon® Variseal® M	Face, (Internal Pressure)	Trelleborg Face Seal Gland Standard
U	N/A	DVC	Turcon® Variseal® M	Face, (External Pressure)	Trelleborg Face Seal Gland Standard
	N/A	DVE	Turcon® Variseal® H	Face, (Internal Pressure)	Trelleborg Face Seal Gland Standard
$\langle O \rangle$	N/A	DVL	Turcon® Variseal® H	Face, (External Pressure)	Trelleborg Face Seal Gland Standard
	S38686	DYHA	Turcon® HST Seal	Face, (Internal Pressure)	Trelleborg Face Seal Gland Standard
	N/A	DYHB	Turcon® HST Seal	Face, (External Pressure)	Trelleborg Face Seal Gland Standard

Cross Section	Old Part No.	New Part No.	Description	Seal Type	Gland Standard
	N/A	PAOO_G	Turcon® Wedgpak®II	Piston	AS4716 Rev. A Zero Back-up Rings
	N/A	PAA1_G	Turcon® Wedgpak®II	Piston	AS4716 Rev. A One Back-up Ring
	N/A	PAA2_G	Turcon® Wedgpak®II	Piston	AS4716 Rev. A Two Back-up Rings
	N/A	PAB1_G	Turcon [®] Wedgpak [®] EP	Piston	AS4716 Rev. A One Back-up Ring
	N/A	PAB2_G	Turcon [®] Wedgpak [®] EP	Piston	AS4716 Rev. A Two Back-up Rings
	N/A	PAUO_G	Turcon® Unidirectional Wedgpak®II	Piston	AS4716 Rev. A Zero Back-up Rings
	N/A	PAU1_G	Turcon® Unidirectional Wedgpak®II	Piston	AS4716 Rev. A One Back-up Ring
	N/A	PAU2_G	Turcon® Unidirectional Wedgpak®II	Piston	AS4716 Rev. A Two Back-up Rings
	N/A	PBAO_G	Turcon® T-Seal	Piston	AS4716 Rev. A Zero Back-up Rings
	N/A	PBA1_G	Turcon® T-Seal	Piston	AS4716 Rev. A One Back-up Ring
	N/A	PBA2_G	Turcon® T-Seal	Piston	AS4716 Rev. A Two Back-up Rings
	N/A	PBB2_G	Turcon® T-Seal Staged	Piston	AS4716 Rev. A Two Back-up Rings
	N/A	PDAO_G	Grooved Turcon® Double Delta® II	Piston	AS4716 Rev. A Zero Back-up Rings

Cross Section	Old Part No.	New Part No.	Description	Seal Type	Gland Standard
	N/A	PDA1_G	Grooved Turcon® Double Delta® II	Piston	AS4716 Rev. A One Back-up Ring
	N/A	PDA2_G	Grooved Turcon® Double Delta® II	Piston	AS4716 Rev. A Two Back-up Rings
	N/A	PDA1AG	Grooved Turcon® Double Delta® II w/ one Back-up Ring	Piston	AS4716 Rev. A One Back-up Ring
	N/A	PDA2AG	Grooved Turcon® Double Delta® II w/ two Back-up Rings	Piston	AS4716 Rev. A Two Back-up Rings
	N/A	PDA18G	Grooved Turcon® Double Delta® II w/ one Stakbak® Back-up Ring	Piston	AS4716 Rev. A One Back-up Ring
	N/A	PDA28G	Grooved Turcon® Double Delta® II w/ two Stakbak® Back-up Rings	Piston	AS4716 Rev. A Two Back-up Rings
	N/A	PDB0_G	Turcon® Double Delta® II	Piston	AS4716 Rev. A Zero Back-up Rings
	N/A	PDB1_G	Turcon® Double Delta® II	Piston	AS4716 Rev. A One Back-up Ring
	N/A	PDB2_G	Turcon® Double Delta® II	Piston	AS4716 Rev. A Two Back-up Rings
	N/A	PDB1AG	Turcon® Double Delta® II w/ one Back-up Ring	Piston	AS4716 Rev. A One Back-up Ring
	N/A	PDB2AG	Turcon® Double Delta® II w/ two Back-up Rings	Piston	AS4716 Rev. A Two Back-up Rings
	N/A	PDB18G	Turcon® Double Delta® II w/ one Stakbak® Back-up Ring	Piston	AS4716 Rev. A One Back-up Ring
	N/A	PDB28G	Turcon® Double Delta® II w/ two Stakbak® Back-up Rings	Piston	AS4716 Rev. A Two Back-up Rings

Cross Section	Old Part No.	New Part No.	Description	Seal Type	Gland Standard
	N/A	PPAO	Grooved Turcon® Plus Seal® II	Piston	AS4716 Rev. A Zero Back-up Rings
	N/A	PPA1	Grooved Turcon® Plus Seal® II	Piston	AS4716 Rev. A One Back-up Ring
	N/A	PPA2	Grooved Turcon® Plus Seal® II	Piston	AS4716 Rev. A Two Back-up Rings
	N/A	PPA1A	Grooved Turcon® Plus Seal® II w/ one Back-up Ring	Piston	AS4716 Rev. A One Back-up Ring
	N/A	PPA2A	Grooved Turcon® Plus Seal® II w/ two Back- up Rings	Piston	AS4716 Rev. A Two Back-up Rings
	N/A	PPA18G	Grooved Turcon® Plus Seal® II w/ one Stakbak® Back-up Ring	Piston	AS4716 Rev. A One Back-up Ring
	N/A	PPA28G	Grooved Turcon® Plus Seal® w/ two Stakbak® Back-up Rings	Piston	AS4716 Rev. A Two Back-up Rings
	N/A	PPBO	Turcon [®] Plus Seal [®] II	Piston	AS4716 Rev. A Zero Back-up Rings
	N/A	PPB1	Turcon [®] Plus Seal [®] II	Piston	AS4716 Rev. A One Back-up Ring
	N/A	PPB2	Turcon [®] Plus Seal [®] II	Piston	AS4716 Rev. A Two Back-up Rings
	N/A	PPB1A	Turcon [®] Plus Seal [®] II w/ one Back-up Ring	Piston	AS4716 Rev. A One Back-up Ring
	N/A	PPB2A	Turcon [®] Plus Seal [®] II w/ two Back-up Rings	Piston	AS4716 Rev. A Two Back-up Rings
	N/A	PPB18G	Turcon® Plus Seal® II w/ one Stakbak® Back-up Ring	Piston	AS4716 Rev. A One Back-up Ring

Cross Section	Old Part No.	New Part No.	Description	Seal Type	Gland Standard
	N/A	PPB28G	Turcon® Plus Seal® II w/ two Stakbak® Back-up Rings	Piston	AS4716 Rev. A Two Back-up Rings
	N/A	PSFOOB	Turcon [®] Stepseal®	Piston	AS4716 Rev. A Zero Back-up Rings
	N/A	PVA_0	Turcon [®] Variseal [®] M2	Piston	AS4716 Rev. A Zero Back-up Rings
	N/A	PVA_B	Turcon [®] Variseal [®] M2	Piston	AS4716 Rev. A One Back-up Ring
	N/A	PVA_E	Turcon® Variseal® M2	Piston	AS4716 Rev. A Two Back-up Rings
	N/A	PVC	Turcon® Variseal® M2S	Piston	AS4716 Rev. A Zero Back-up Rings
	N/A	PVE_0	Turcon® Variseal® H	Piston	AS4716 Rev. A Zero Back-up Rings
	N/A	PVE_B	Turcon® Variseal® H	Piston	AS4716 Rev. A One Back-up Ring
	N/A	PVE_E	Turcon® Variseal® H	Piston	AS4716 Rev. A Two Back-up Rings
	N/A	PVJ_0	Turcon [®] Variseal [®] W2	Piston	AS4716 Rev. A Zero Back-up Rings
	N/A	PVJ_B	Turcon [®] Variseal [®] W2	Piston	AS4716 Rev. A One Back-up Ring
	N/A	PVJ_E	Turcon [®] Variseal [®] W2	Piston	AS4716 Rev. A Two Back-up Rings
C	N/A	PVP_0	Turcon® Variseal® SA	Piston	AS4716 Rev. A Zero Back-up Rings

Cross Section	Old Part No.	New Part No.	Description	Seal Type	Gland Standard
	N/A	PVP_B	Turcon [®] Variseal [®] SA	Piston	AS4716 Rev. A One Back-up Ring
	N/A	PVP_E	Turcon [®] Variseal [®] SA	Piston	AS4716 Rev. A Two Back-up Rings
	N/A	RBB2_G	Turcon® T-Seal Staged	Rod	AS4716 Rev. A Two Back-up Rings
	N/A	RDAO_G	Grooved Turcon® Double Delta® II	Rod	AS4716 Rev. A Zero Back-up Rings
	N/A	RDA1_G	Grooved Turcon® Double Delta® II w/ one Back-up Ring	Rod	AS4716 Rev. A One Back-up Ring
	N/A	RDA2_G	Grooved Turcon® Double Delta® II w/ two Back-up Rings	Rod	AS4716 Rev. A Two Back-up Rings
	N/A	RDA1AG	Grooved Turcon® Double Delta® II w/ one Back-up Ring	Rod	AS4716 Rev. A One Back-up Ring
	N/A	RDA2AG	Grooved Turcon® Double Delta® II w/ two Back-up Rings	Rod	AS4716 Rev. A Two Back-up Rings
	N/A	RDA18G	Grooved Turcon® Double Delta® II w/ one Stakbak® Back-up Ring	Rod	AS4716 Rev. A One Back-up Ring
	N/A	RDA28G	Grooved Turcon® Double Delta® II w/ two Stakbak® Back-up Rings	Rod	AS4716 Rev. A Two Back-up Rings
	N/A	RDB0_G	Turcon® Double Delta® II	Rod	AS4716 Rev. A Zero Back-up Rings
	N/A	RDB1_G	Turcon [®] Double Delta [®] II	Rod	AS4716 Rev. A One Back-up Ring
	N/A	RDB2_G	Turcon® Double Delta® II	Rod	AS4716 Rev. A Two Back-up Rings

Cross Section	Old Part No.	New Part No.	Description	Seal Type	Gland Standard
	N/A	RAAO_G	Turcon® Unidirectional Wedgpak® II	Rod	AS4716 Rev. A Zero Back-up Rings
	N/A	RAA1_G	Turcon® Wedgpak® II	Rod	AS4716 Rev. A One Back-up Ring
	N/A	RAA2_G	Turcon [®] Wedgpak [®] II	Rod	AS4716 Rev. A Two Back-up Rings
	N/A	RAB1_G	Turcon® Wedgpak® EP	Rod	AS4716 Rev. A One Back-up Ring
	N/A	RAB2_G	Turcon® Wedgpak® EP	Rod	AS4716 Rev. A Two Back-up Rings
	N/A	RAUO_G	Turcon® Unidirectional Wedgpak® II	Rod	AS4716 Rev. A Zero Back-up Rings
	N/A	RAU1_G	Turcon® Unidirectional Wedgpak® II	Rod	AS4716 Rev. A One Back-up Ring
	N/A	RAU2_G	Turcon® Unidirectional Wedgpak® II	Rod	AS4716 Rev. A Two Back-up Rings
	N/A	RBAO_G	Turcon® T-Seal	Rod	AS4716 Rev. A Zero Back-up Rings
	N/A	RBA1_G	Turcon® T-Seal	Rod	AS4716 Rev. A One Back-up Ring
	N/A	RBA2_G	Turcon® T-Seal	Rod	AS4716 Rev. A Two Back-up Rings
	N/A	RDB1AG	Turcon® Double Delta® II w/ one Back-up Ring	Rod	AS4716 Rev. A One Back-up Ring
	N/A	RDB2AG	Turcon® Double Delta® II w/ two Back-up Rings	Rod	AS4716 Rev. A Two Back-up Rings

331

Cross Section	Old Part No.	New Part No.	Description	Seal Type	Gland Standard
	N/A	RDB18G	Turcon® Double Delta® II w/ one Stakbak® Back-up Ring	Rod	AS4716 Rev. A One Back-up Ring
	N/A	RDB28G	Turcon® Double Delta® II w/ two Stakbak® Back-up Rings	Rod	AS4716 Rev. A Two Back-up Rings
	N/A	REL2	Turcon [®] VL seal	Rod	AS4716 Rev. A Zero Back-up Rings
	N/A	REL2B	Turcon® VL seal w/ one Back-up Ring	Rod	AS4716 Rev. A One Back-up Ring
	N/A	REL2E	Turcon® VL seal w/ one Back-up Ring	Rod	AS4716 Rev. A Two Back-up Rings
	N/A	RPAO	Grooved Turcon® Plus Seal® II	Rod	AS4716 Rev. A Zero Back-up Rings
	N/A	RPA1	Grooved Turcon® Plus Seal® II	Rod	AS4716 Rev. A One Back-up Ring
	N/A	RPA2	Grooved Turcon [®] Plus Seal [®] II	Rod	AS4716 Rev. A Two Back-up Rings
	N/A	RPA1A	Grooved Turcon® Plus Seal® II w/ one Back-up Ring	Rod	AS4716 Rev. A One Back-up Ring
	N/A	RPA2A	Grooved Turcon® Plus Seal® II w/ two Back- up Rings	Rod	AS4716 Rev. A Two Back-up Rings
	N/A	RPA18G	Grooved Turcon® Plus Seal® II w/ one Stakbak® Back-up Ring	Rod	AS4716 Rev. A One Back-up Ring
	N/A	RPA28G	Grooved Turcon® Plus Seal® II w/ two Stakbak® Back-up Rings	Rod	AS4716 Rev. A Two Back-up Rings
	N/A	RPBO	Turcon [®] Plus Seal [®] II	Rod	AS4716 Rev. A Zero Back-up Rings

Cross Section	Old Part No.	New Part No.	Description	Seal Type	Gland Standard
	N/A	RPB1	Turcon [®] Plus Seal [®] II	Rod	AS4716 Rev. A One Back-up Ring
	N/A	RPB2	Turcon [®] Plus Seal [®] II	Rod	AS4716 Rev. A Two Back-up Rings
	N/A	RPB1A	Turcon [®] Plus Seal [®] II w/ one Back-up Ring	Rod	AS4716 Rev. A One Back-up Ring
	N/A	RPB2A	Turcon [®] Plus Seal [®] II w/ two Back-up Rings	Rod	AS4716 Rev. A Two Back-up Rings
	N/A	RPB18G	Turcon® Plus Seal® II w/ one Stakbak® Back-up Ring	Rod	AS4716 Rev. A One Back-up Ring
	N/A	RPB28G	Turcon® Plus Seal® II w/ two Stakbak® Back-up Rings	Rod	AS4716 Rev. A Two Back-up Rings
	N/A	RSF00B	Turcon [®] Stepseal [®] 2K	Rod	AS4716 Rev. A Zero Back-up Rings
	N/A	RVA_0	Turcon [®] Variseal [®] M2	Rod	AS4716 Rev. A Zero Back-up Rings
	N/A	RVA_B	Turcon® Variseal® M2 w/ one Back-up Ring	Rod	AS4716 Rev. A One Back-up Ring
	N/A	RVA_E	Turcon® Variseal® M2 w/ two Back-up Rings	Rod	AS4716 Rev. A Two Back-up Rings
	N/A	RVC	Turcon [®] Variseal [®] M2S	Rod	AS4716 Rev. A Zero Back-up Rings
	N/A	RVE_0	Turcon® Variseal® H	Rod	AS4716 Rev. A Zero Back-up Rings
	N/A	RVE_B	Turcon® Variseal® H w/ one Back-up Ring	Rod	AS4716 Rev. A One Back-up Ring
	N/A	RVE_E	Turcon® Variseal® H w/ two Back-up Rings	Rod	AS4716 Rev. A Two Back-up Rings

Cross Section	Old Part No.	New Part No.	Description	Seal Type	Gland Standard
	N/A	RVJ_0	Turcon [®] Variseal [®] W2	Rod	AS4716 Rev. A Zero Back-up Rings
	N/A	RVJ_B	Turcon® Variseal® W2 w/ one Back-up Ring	Rod	AS4716 Rev. A One Back-up Ring
	N/A	RVJ_E	Turcon® Variseal® W2 w/ two Back-up Rings	Rod	AS4716 Rev. A Two Back-up Rings
C	N/A	RVP_0	Turcon [®] Variseal [®] SA	Rod	AS4716 Rev. A Zero Back-up Rings
	N/A	RVP_B	Turcon® Variseal® SA w/ one Back-up Ring	Rod	AS4716 Rev. A One Back-up Ring
C	N/A	RVP_E	Turcon® Variseal® SA w/ two Back-up Rings	Rod	AS4716 Rev. A Two Back-up Rings

Aerospace Part Number Reference Guide - (By New Part Number)

New P/N	Old P/N
BG010M	\$37001
BG020M	\$37002
BG110M	\$37011
BG210M	\$37011 \$37021
	ļ
BG410M	\$37241
BG420M	\$37242
BG440G	S38544
BG450G	S38545
BG480M	S11248
BG510M	S37251
BG520M	S37252
BG550M	S37055
BG600M	S37060
BG610M	S37261
BG660M	S12766
BG690M	S13069
BG710M	S37271
BG760M	S37076
BG830M	S37083
BG870G	S38587
BG880G	S38588
BG920M	S36992
BG940M	S30294
BG990M	S36991
BGS10M	S33861
BGS20M	S13122
BP090A	S11109
BP170M	S12517
BU100M	S30310
BU180G	S38618
BU190G	S38619
BU230M	S33823

New P/N	Old P/N
BU440M	S33824
BU870M	S12587
BU890M	S30989
BUS00M	S13050
BUS70M	S33157
DW000B	S38000
DW010B	S38001
GPWB	S34546
GPXB	S34545
GP_YB	S34547
GRWB	S34549
GRXB	S34548
GR_YB	S34550
N/A	S11242
N/A	S11243
N/A	S11370
N/A	S11943
N/A	S12257
N/A	S13076
N/A	S13077
N/A	S13180
N/A	S13181
N/A	S13201
N/A	S13206
N/A	S13207
N/A	S30471
N/A	S30611
N/A	S30622
N/A	S30676
N/A	S30681
N/A	S30682
N/A	S30683

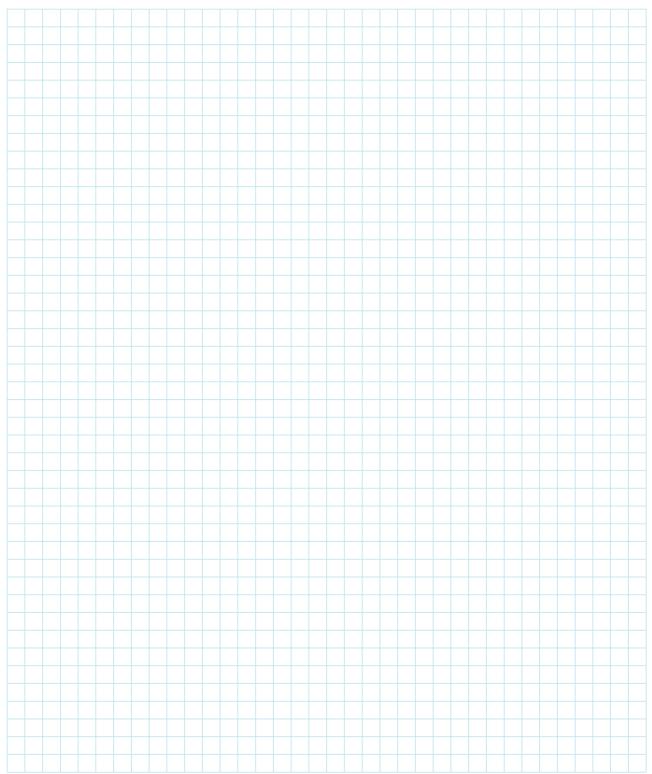
New P/N	Old P/N
N/A	S30684
N/A	S32831
N/A	S32832
N/A	S32840
N/A	S32841
N/A	S32842
N/A	S32891
N/A	S32892
N/A	S32893
N/A	S32894
N/A	\$32909
RG13_B	\$32913
PG14_B	S32914
N/A	\$32985
N/A	\$33081
N/A	S33084
N/A	S33087
N/A	S33090
N/A	\$33277
N/A	S33278
N/A	S33353
N/A	S33528
N/A	S33557
N/A	S33565
N/A	S34841
N/A	S34842
OC140M	S11214
0C320M	S11732
PA1M	S38621
PA2_M	S38622
PA640M	S35964
PA80_M	S34780

New P/N	Old P/N
PA81_M	S34781
PA82_M	S34782
PB00_M	\$34700
PB01_M	S34701
PB02_M	S34702
PB20_M	S38420
PB21_M	S38421
PB22_M	S38422
PD00_M	S12714
PD03_M	S12508
PD04_M	S12563
PD05_M	S12603
PD06_M	S12716
PD070M	S12957
PD080M	S30289
PD10_M	S30641
PD11_M	S30642
PD130M	S11338
PD19_M	S30640
PD60_M	S30660
PD61_M	S30661
PD62_M	S30662
PD780M	S30678
PD80_M	S32860
PD81_M	S32861
PD82_M	S32862
PF00_B	S11052
PF01_B	S11114
PF02_B	S12083
PF03_B	S12230
PF04_B	S13095
PF05_B	S13126

Aerospace Part Number Reference Guide - (By New Part Number)
---	---------------------

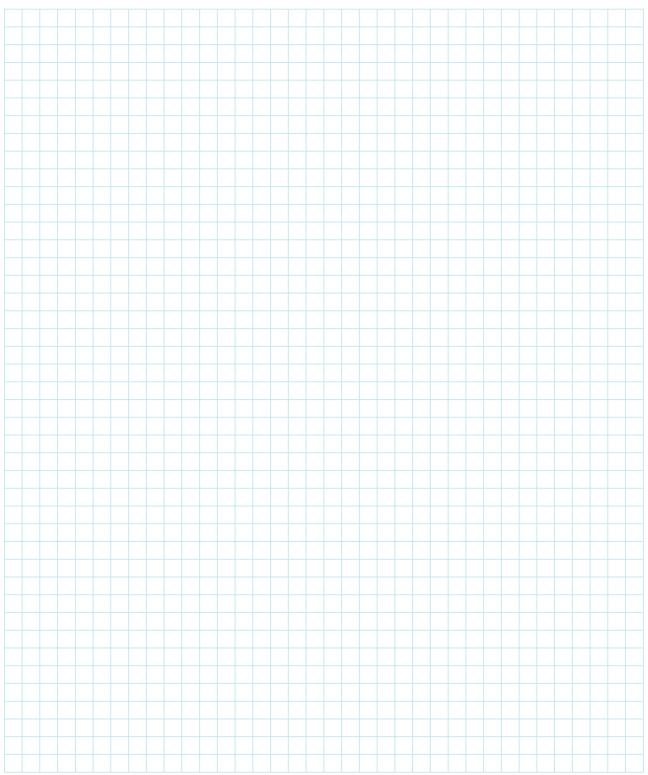
New P/N	Old P/N
PF06_B	S13135
PF07_B	S30071
PF08_B	S38003
PF09_B	S38002
PF52_B	S32152
PG00_B	S11718
PG02_B	S32910
PG28_B	S32928
PG47_B	S12547
PG59N	S30059
PG68_B	S12068
PG95_B	S12795
PG990B	S12599
PGE4_B	S32934
PP00_M	S38362
PP01_M	S36621
PP02_M	S37401
PP03_M	S36622
PP040M	S37804
PP09_M	S33709
PP21_M	S34721
PP22_M	S34722
PP37_M	S12737
PP50_M	S34750
PP52_M	S30852
PP60_M	S34760
PP61_M	S37061
PP62_M	S37062
PP66_M	S38662
PP68_M	S38661
PP72_M	S30772
PP81_M	S34581

New P/N	Old P/N
PP82_M	S34582
PQ200M	S38620
PS720B	S32572
PS740B	S32574
PSA80B	S34768
PV920M	S32240
PV930M	S32265
RA1_M	S38611
RA2_M	S38612
RA490G	S38649
RA610M	S35961
RA70_M	S34770
RA71_M	S34771
RA72_M	S34772
RB10_M	S38410
RB11_M	S38411
RB12_M	S38412
RB90_M	S34690
RB91_M	S34691
RB92_M	S34692
RD03_M	S12223
RD040M	S12560
RD05_M	S12561
RD06_M	S12562
RD07_M	S12604
RD08_M	S12715
RD090M	S12956
RD100M	S13068
RD12_M	S13200
RD140M	S30010
RD160M	S30050
RD17_M	S30630



New P/N	Old P/N
RD18_M	S30631
RD19_M	S30632
RD200M	S30675
RD210M	S30677
RD22_M	S32830
RD240B	S11859
RD50_M	S30650
RD51_M	S30651
RD52_M	S30652
RD550M	S33555
RD80_M	S32850
RD81_M	S32851
RD82_M	S32852
RD890M	S11589
RF210B	S33121
RF95_B	\$12095
RG00_B	\$11717
RG27_B	S32927
RG46_B	S12546
RG58N	S30058
RG66_B	S12066
RG94_B	S12794
RGE3_B	S32933
RH170M	\$33317
RH310M	S34831
RH320M	S34832
RH510M	S34851
RH520M	\$34852
RH530B	\$34853
RH790M	S32979
RH910M	S32991
RP00_M	S36611

New P/N	Old P/N
RP01_M	S34435
RP02_M	S37411
RP03_M	S37431
RP11_M	S34711
RP12_M	\$34712
RP31_M	S38371
RP32_M	S38372
RP35_M	S12735
RP40_M	S11940
RP470G	S38647
RP51_M	\$37051
RP52_M	S37052
RP55_M	S30855
RP71_M	S34571
RP72_M	S34572
RP75_M	S30775
RP81_M	S38671
RP82_M	S38672
RP99_M	S36612
RS570B	S32571
RS730B	S32573
RSA70B	S34767
WE25_B	S32925
WE65_S	S33865
WE670B	S37967
WE69_S	S30669
WE710B	S37971
WE720B	S37972
WE95_B	S30395
WM650S	S11065
WM820S	S34382
WM880S	S30388


Notes

Latest information available at www.tss.trelleborg.com Edition August 2011

Notes

LOCAL CONTACTS

EUROPE

Austria - Vienna (Slovenia) +43 (0) 1 406 47 33 Belgium - Dion-Valmont (Luxembourg) +32 (0) 10 22 57 50 Bulgaria – Sofia (Azerbaijan, Belarus, Greece, Romania, Ukraine) +359 (0) 2 969 95 99 Croatia – Zagreb (Albania, Bosnia and Herzegovina, Macedonia, Serbia, Montenegro) +385 (0) 1 24 56 387 Czech Republic - Rakovnik (Slovakia) +420 313 529 111 **Denmark – Copenhagen** +45 48 22 80 80 Finland - Vantaa (Estonia, Latvia) +358 (0) 207 12 13 50 France - Maisons-Laffitte +33 (0) 1 30 86 56 00

AMERICAS

Americas Regional +1 260 749 9631 Brazil – São José dos Campos +55 12 3932 7600 Canada Central – Etobicoke, ON +1 416 213 9444 Canada East – Montreal, QC +1 514 284 1114 Canada West – Langley, BC +1 604 539 0098 Mexico - Mexico City +52 55 57 19 50 05

ASIA PACIFIC

Asia Pacific Regional +65 6 577 1778 China – Hong Kong +852 2366 9165 China – Shanghai +86 (0) 21 6145 1830 India – Bangalore +91 (0) 80 3372 9000 Japan – Tokyo +81 (0) 3 5633 8008 Korea – Seoul +82 (0) 2 761 3471

AFRICA, CENTRAL ASIA AND MIDDLE EAST

Africa & Iran (excluding South Africa (see UK)) +41 (0) 21 631 41 11

Germany - Stuttgart +49 (0) 711 7864 0 Hungary – Budaörs +36 (06) 23 50 21 21 Italy - Livorno +39 0586 22 6111 **The Netherlands - Rotterdam** +31 (0) 10 29 22 111 Norway - Oslo +47 22 64 60 80 Poland – Warsaw (Lithuania) +48 (0) 22 863 30 11 Russia – Moscow +7 495 627 57 22 Spain – Madrid (Portugal) +34 (0) 91 71057 30 Sweden – Jönköping +46 (0) 36 34 15 00

USA, Great Lakes - Fort Wayne, IN +1 260 482 4050 USA, East - Mt. Juliet, TN +1 615 800 8340 USA, Midwest - Schaumburg, IL +1 630 539 5500 USA, Northern California - Fresno, CA +1 559 449 6070 USA, Northwest - Portland, OR +1 503 595 6565 USA, Southwest - Houston, TX +1 713 461 3495

Malaysia - Kuala Lumpur +60 (0) 3 90549266 Taiwan – Taichung +886 4 2382 8886 Vietnam – Ho Chi Minh City +84 8 6288 6407 Singapore and all other countries in South and East Asia, Australasia +65 6 577 1778 Switzerland – Crissier +41 (0) 21 631 41 11 Turkey – Istanbul +90 216 569 73 00 United Kingdom - Solihull (Eire, South Africa) +44 (0) 121 744 1221

Aerospace Hub Europe, North

(UK and Nordic Countries) +44 (0) 121 744 1221 **Aerospace Hub Europe, South & West** (Continental Europe and Middle East) +33 (0) 1 30 86 56 00 **Automotive Hub Europe** +49 (0) 711 7864 0

Aerospace Hub Airframe +1 303 469 1357 Aerospace Hub Distribution & Engineering +1 260 749 9631 Aerospace Hub East +1 610 828 3209 Aerospace Hub West +1 310 371 1025 Automotive Hub North America +1 734 354 1250 Automotive Hub South America +55 12 3932 7600

Aerospace Hub China +86 (0) 21 6145 1830 Aerospace Hub Singapore +65 6 577 1778 Automotive Hub China +86 (0) 21 6145 1830 Automotive Hub India +91 (0) 80 3372 9200

Central Asia (Armenia, Georgia, Kazakhstan, Kyrgyzstan, Tajikistan, Uzbekistan) +7 495 627 57 22 **Middle East and Gulf Region** +359 (0) 2 969 95 99

Trelleborg is a world leader in engineered polymer solutions that seal, damp and protect critical applications in demanding environments. Its innovative engineered solutions accelerate performance for customers in a sustainable way. The Trelleborg Group has local presence in over 40 countries around the world.

facebook.com/TrelleborgSealingSolutions twitter.com/TrelleborgSeals youtube.com/TrelleborgSeals flickr.com/TrelleborgSealingSolutions

