

Confor foam technical paper

Getting to the bottom of comfort

Viscoelastic foams simplify design of seating applications.

In many applications, substituting a specialty component for a commodity improves some characteristics, such as performance, durability or even appearance. A titanium bicycle frame, for example, is stronger and lighter than aluminium or leather upholstery, breathes better and feels more luxurious than vinyl. Generally though, premium properties come with a higher price.

Applications engineers have developed techniques that the designers of chairs and seats can employ to take advantage of a specialty cushioning foam and yet hold the line on materials costs.

The proprietary material is a highly damped viscoelastic urethane called Confor foam, a medium-density, semi-reticulated foam. Developed a couple of decades ago as a seating material for the space program, Confor foam exhibits a unique combination of ergonomic, almost space-age properties that can be duplicated only by use of multiple materials plus mechanical or structural components. The foams are formulated to have the f eel of very soft or very thick cushioning foam yet offer the support and protection of a stiffer material.

How Confor foams perform as a cushioning material, Confor foams provide the structural support of a solid, the low-pressure comfort of a fluid, and the shock absorption of a very thick material. Thus they offer a singular combination of comfort, anti-fatigue and impact safety components found in virtually no other material.

Most urethane foams are elastic, that is, they deflect under a load and return a force to the load that is equal to the deflection of the elastic material multiplied by its stiffness. (Force = deflection x stiffness).

Likewise, when a person sits on common urethane foam, the material deflects and returns a force that is proportional to the amount of deflection, similar to a spring. Areas of greatest deflection receive the greatest return force. These pressure hot spots can restrict blood circulation to portions of the body. They account for the discomfort and fatigue that can result from remaining in a seat for extended periods. Long term exposure to pressure points can cause decubit us ulcers, commonly referred to as bed sores.

Viscoelastic foams do not respond in the same way. They are a hybrid of properties. The viscous response allows the even distribution of load while the elastic response allows the foam to support a static load. Viscous refers to a fluid response flowing away from the load or force. The fluid redistributes the applied pressure. Viscoelastic materials, such as Confor foams, f low away from the point of contact. The force that is returnedt he elastic part of the equationi s not proportional to the displacement. Ideally, all of the loaded area of the foam should return the same force to the body, no matter what its deflection.

Confor foams key property that accounts for this behaviour and sets the foams apart from other Viscoelastic materials is damping. As highly damped materials, Confor foams dissipate energy through hysteretic loss, directly converting mechanical energy into low-grade heat. This ability is derived from the chemical makeup of the materiala unique polyurethane polymer structure that gives the material its energy absorption capabilities and slow recovery behaviour.

How to design with Confor foam our applications engineers employ computer-based pressure mapping technology to help customers optimize their seating designs. With this system, computer-linked sensors detect and measure the loading on a surface and translate it into colours that form a pressure map of the area being measured. Areas of greatest pressure show as red and orange, moderate pressure shows as yellow and green, and areas of lightest pressure glow as shades of blue.

Engineers use this technology to compare the various Confor formulationst he material comes in a variety of stiffnesss and several densitiesw hen used in a particular design, and they can pinpoint areas that may require special treatments, such as the base of the spine or under the thighs (See Figure 1).

With Confor foams, it is possible to achieve numerous ergonomic properties in a design that traditionally would require the use of multiple materials, some of them used in great quantity and at great cost, coupled with structural or mechanical elements. A relatively thin layer of Confor foam used in combination with traditional high resilience (HR) seating foams, can significantly and cost effectively increase comfort levels in most applications (See Figure 2).

Here are a few key principles to guide seating design with Confor foams:

- 1. Use softer formulations on top of stiffer ones. A layer of soft or medium-stiff Confor foam gives a seat cushion a pleasing feel while the stiffer formulations provide substantial support.
- 2. Use a thin layer of high-resilience urethane, fabric or a padding material over the Confor foam core as a wear layer.
- 3. Use stiffer formulations in areas of the seat that will have the highest loada the base of the spine, for example. This prevents bottoming out, or complete collapse.
- 4. Match the stiffness of the Confor foam to the weight of the intended occupantg reater stiffnesss for higher weights, or use multiple stiffnesss in layers, to accommodate a wider range of weights.
- 5. Consider the environment of use, in highertemperature applications 80 F or greateru se stiffer foams to accommodate Confor foams temperature responsiveness.

Key properties of Confor foams

- Highly damped, Viscoelastic
- Slow recovery after compression
- Energy-absorbent resist bottoming out
- Excellent memory
- Comfort of a soft foam, support of a stiff foam
- Hypo-allergenic
- Pass California Flame 117, FAR 25.853(a) and British standard Crib 5
- Temperature responsive conform to the body

These pressure maps represent the distribution of weight of a 170-pound man seated on high resilience

urethane (left) and Confor foam (right). Red depicts areas of 0.6-0.8 psi, and dark blue represents areas of less than 0.2 psi. The Confor foam distributes the weight evenly, so loading is significantly reduced.

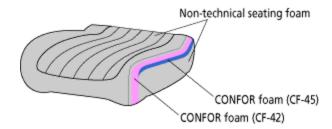


Figure 2: Example of Composite Ergonomic Cushion

Combining Confor foams with traditional high-resilience urethanes allows seat designers to build in specialty properties but at a commodity price. Here a common construction sandwiches two layers of Confor foam between a base core and thin top layer of traditional seating foam. For aestheticsa nice soft feelt he softer formulation, CF-42, is layered over a supportive layer of the stiffer foam, CF-45.

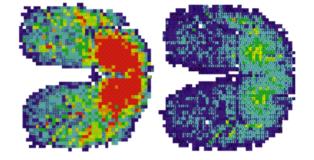
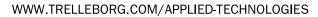



Figure 1: Pressure Maps

